融合人工势场灰狼算法的移动机器人路径规划
DOI:
CSTR:
作者:
作者单位:

新疆大学智能制造现代产业学院(机械工程学院) 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP242;TN01

基金项目:

国家自然科学基金(5226050231)项目资助


Path planning of mobile robots using grey wolf algorithm with artificial potential field fusion
Author:
Affiliation:

School of Intelligent Manufacturing and Modern Industry(School of Mechanical Engineering), Xinjiang University, Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决灰狼算法在进行路径规划过程中存在的易陷入局部极值导致的搜索不到最优路径的情况,本文提出一种融合人工势场的改进灰狼算法。首先,通过非线性策略对收敛因子进行改进,保证搜索过程中种群的多样性;其次,改进灰狼位置更新策略,结合天牛须更新方法,增大算法的搜索范围;最后,融合灰狼算法和人工势场,提升算法搜索效率以及路径的安全性。并通过在3种不同的栅格地图环境中进行仿真实验,实验结果表明,改进灰狼算法能在保证路径长度较短的同时减少机器人的转向次数。

    Abstract:

    In order to solve the situation that the gray wolf algorithm is easy to fall into the local extreme value during the path planning process, this paper proposes an improved gray wolf algorithm incorporating the artificial potential field. Firstly, the convergence factor is improved by a nonlinear strategy to ensure the diversity of populations in the search process; secondly, the gray wolf position update strategy is improved by combining with the beetle antennae search strategy update method to improve the searching ability of the algorithm; finally, the gray wolf algorithm and artificial potential field are fused to improve the searching efficiency of the algorithm as well as the security of the paths. The experimental results show that the improved gray wolf algorithm reduces; the number of robot steering while ensuring a shorter path length.

    参考文献
    相似文献
    引证文献
引用本文

韩文旭,章翔峰,姜宏,焦文博,高博.融合人工势场灰狼算法的移动机器人路径规划[J].电子测量技术,2025,48(4):44-50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码