基于YOLOv8的输电线路巡检算法研究
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830017;2.乌鲁木齐供电公司 乌鲁木齐 830000

作者简介:

通讯作者:

中图分类号:

TN0;TP391

基金项目:

新疆维吾尔自治区自然科学基金(2023D01C21)、国家自然科学基金(62362063)项目资助


Research on transmission line inspection algorithm based on YOLOv8
Author:
Affiliation:

1.School of Electrical Engineering, Xinjiang University,Urumqi 830017, China; 2.Urumqi Power Supply Company,Urumqi 830000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前输电线路巡检存在检测精度差的问题,提出一种基于YOLOv8的输电线路巡检算法(GCAF-YOLOv8)。首先,设计了一种全局通道空间注意力模块GCSA,以增强输入特征图的表达能力,该模块结合了通道注意力、通道洗牌和空间注意力机制,旨在捕捉特征图中的全局依赖关系;其次,引入StarNet中的StarBlocks结构, 将它与Neck和Backbone部分原有C2f模块进行融合,从而构建出新的C2f_Star模块,以提高目标检测的准确率并降低模型整体的参数量;然后,提出用ADown卷积模块替换基线模型中的传统卷积,以提高对不明显特征的检测准确率;最后,将Focal Loss和YOLOv8中原始的CIoU进行结合,设计出Focal-CIoU损失函数,以解决类别不平衡问题和提高检测框位置预测精度;实验结果表明,提出的GCAF-YOLOv8模型较原模型检测精度P提高了3.3%,平均精度检测均值mAP提高了3%,可以很好地检测出电力部件各种缺陷以及输电线路上的异物。

    Abstract:

    In response to the problem of poor detection accuracy in current transmission line inspections, a transmission line inspection algorithm based on YOLOv8 (GCAF-YOLOv8) is proposed. Firstly, designed a global channel spatial attention module GCSA to enhance the expressive power of input feature maps. This module combines channel attention, channel shuffling, and spatial attention mechanisms to capture global dependencies in feature maps. Secondly, introduce the StarBlocks structure from StarNet and fuse it with the existing C2f modules in Neck and Backbone to construct a new C2f_Star module, which improves the accuracy of object detection and reduces the overall parameter count of the model. Then, it is proposed to replace the traditional convolution in the baseline model with the ADown convolution module to improve the detection accuracy of subtle features. Finally, combining Focal Loss with the original CIoU in YOLOv8, a Focal CIoU Loss function is designed to solve the problem of class imbalance and improve the accuracy of detecting box position prediction. The experimental results show that the proposed GCAF-YOLOv8 model has improved detection accuracy P by 3.3% and average accuracy detection mean mAP by 3% compared to the original model. It can effectively detect various defects in power components and foreign objects on transmission lines.

    参考文献
    相似文献
    引证文献
引用本文

赵福生,尼鹿帕尔·艾克木,伊力哈木·亚尔买买提,郭松杰.基于YOLOv8的输电线路巡检算法研究[J].电子测量技术,2025,48(10):117-126

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告