基于IDBO-SA-LSTM的冷连轧轧制力预测方法
DOI:
CSTR:
作者:
作者单位:

1.武汉大学电气与自动化学院 武汉 430072;2.乳源东阳光优艾希杰精箔有限公司 韶关 512721

作者简介:

通讯作者:

中图分类号:

TP183;TN06

基金项目:

国家自然科学基金(62073247,62103308)、湖北省自然科学基金面上项目(2024AFB719)资助


IDBO-SA-LSTM based rolling force prediction for cold continuous rolling
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Wuhan University,Wuhan 430072, China; 2.Ruyuan Dongyangguang Fine Aluminium Foil Co., Ltd.,Shaoguan 512721,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统轧制力模型预测精度低和DBO算法易陷入局部最优解的问题,提出了一种基于改进蜣螂优化算法的结合自注意力机制的长短期记忆网络轧制力预测模型。加入黄金正弦策略和动态权重系数并引入Circle混沌映射得到改进蜣螂优化(IDBO)算法,通过结合长短期记忆网络(LSTM)与自注意力机制(SA),建立IDBO-SA-LSTM冷轧轧制力预测模型,并与其他模型进行对比。采用6个不同的基准函数对优化算法进行测试,仿真实验表明IDBO算法比麻雀搜索算法、蜣螂优化算法、灰狼搜索算法等具有更快的收敛速度和寻优精度;采用某两机架冷连轧机组6 554次现场作业数据进行轧制力预测实验,最终结果表明IDBO-SA-LSTM算法预测误差指标均小于其他对比模型,预测两道次轧制力±4%之内的命中率均大于99%,模型精度高,泛化能力好。

    Abstract:

    In order to solve the problems of low prediction accuracy of the traditional rolling force model and the dung beetle optimizer(DBO) algorithm′s tendency to fall into local optimal solutions, a rolling force prediction model based on the improved dung beetle optimisation algorithm combined with the self-attention(SA) mechanism for long and short-term memory(LSTM) networks is proposed. An improved dung beetle optimizer(IDBO) algorithm is obtained by adding the golden sine algorithm and dynamic weight coefficients and introducing the Circle chaotic mapping, and by combining the LSTM network with the SA mechanism, the IDBO-SA-LSTM cold rolling force prediction model is established, and compared with other models. Six different benchmark functions are used for testing, and simulation experiments show that IDBO algorithm has faster convergence speed and optimization accuracy than the sparrow search algorithm, the dung beetle optimization algorithm, the grey wolf search algorithm and so on. The rolling force prediction experiments are carried out using 6554 field operation data of a two-stand cold rolling unit, and the results show that the prediction error indexes of the IDBO-SA-LSTM algorithm are smaller than the other comparative models, and the IDBO-SA-LSTM algorithm can predict the rolling force within ±4% with the hit rate of 99%, with high model accuracy and good generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

苏九铮,胡文山,雷忠诚,李坤杰,刘斌斌.基于IDBO-SA-LSTM的冷连轧轧制力预测方法[J].电子测量技术,2025,48(8):24-33

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码