基于改进YOLOv8的无人机红外目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.广西高校先进制造与自动化技术重点实验室(桂林理工大学) 桂林 541006;2.桂林理工大学机械与控制工程学院 桂林 541006;3.桂林理工大学信息科学与工程学院 桂林 541006

作者简介:

通讯作者:

中图分类号:

TP391;TN219

基金项目:

国家自然科学基金(61662917)、广西科技计划重点研发项目(桂科 AB17195042)、广西中青年教师基础能力提升项目(2018KY0248,2020KY06026)、广西建筑新能源与节能重点实验室项目(桂科能 15-J-21-1)资助


UAV infrared target detection algorithm based on improved YOLOv8
Author:
Affiliation:

1.Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region,Guilin 541006, China;2.School of Mechanical and Control Engineering, Guilin University of Technology,Guilin 541006, China;3.School of Information Science and Engineering, Guilin University of Technology,Guilin 541006,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍红外图像中因为噪声干扰、光照波动和复杂背景带来的目标检测困难的问题,提出了一种基于YOLOv8的无人机红外目标检测算法SDE-YOLOv8。首先,引入了YOLOv10中的SCDown模块让每个尺度最大化地保留上下文的语义信息;其次,引入动态上采样器DySample来提升模型对于图像细节的敏感度;同时引入三重注意力机制改进C2f,来强化模型对空间和通道维度之间关系的理解和复杂数据的处理能力;最后,设计了轻量级解耦头Efficient_Head模块,确保了检测精度的同时大幅度减少了模型参数。实验结果表明,改进后的算法mAP50达到83.7%,较YOLOv8n提高了4.2%,精确率提升了1.2%,召回率提升了3.8%,浮点运算次数下降了2.5%,FPS达到了323.17 fps的检测速度,充分说明改进算法整体性能优于其他主流算法,能更好的完成无人机红外目标检测任务。

    Abstract:

    In order to solve the problem of difficulty in target detection caused by noise interference, illumination fluctuation and complex background in UAV aerial infrared images, an infrared target detection model for UAV based on YOLOv8 was proposed. Firstly, the SCDown module in YOLOv10 was introduced to maximize the preservation of contextual semantic information for each scale. Secondly, the dynamic upsampler DySample was introduced to improve the sensitivity of the model to image details. At the same time, the triplet attention mechanism is introduced to improve C2f to strengthen the model′s understanding of the relationship between spatial and channel dimensions and the processing ability of complex data. Finally, a lightweight decoupling head Efficient_Head module is designed to ensure the detection accuracy and greatly reduce the model parameters. Experimental results show that the improved algorithm mAP50 reaches 83.7%, which is 4.2% higher than YOLOv8n, the accuracy is increased by 1.2%, the recall rate is increased by 3.8%, the number of floating point operations isreduced by 2.5%, and the FPS reaches the detection speed of 323.17 fps, which fully shows that the overall performance of the improved algorithm is better than that of other mainstream algorithms, and it can better complete the task of UAV infrared target detection.

    参考文献
    相似文献
    引证文献
引用本文

张瑞芳,刘占占,程小辉,赵虹.基于改进YOLOv8的无人机红外目标检测算法[J].电子测量技术,2025,48(7):46-54

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码