基于隐式自回归时空通道聚合策略的多输入单输出云图预测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学长望学院 南京 210044;2.南京信息工程大学江苏省大气环境与装备技术协同 创新中心 南京 210044;3.南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP751.1;TN0

基金项目:

第二次青藏高原综合科学考察研究项目(2019QZKK0105)、国家社会科学基金一般项目(22BZZ080)、国家级大学生创新创业训练计划支持项目(202410300088Z)资助


Multiple-in-single-out cloud image prediction algorithm based on implicit autoregressive spatiotemporal channel aggregation strategy
Author:
Affiliation:

1.Changwang School of Honors, Nanjing University of Information Science & Technology,Nanjing 210044,China;2. Jiangsu Province Atmospheric Environment and Equipment Technology Collaborative Innovation Center, Nanjing University of Information Science & Technology,Nanjing 210044,China;3. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云图预测的本质是时空序列预测。基于深度学习的时空序列预测算法可以归纳为三种框架,即SISO、MIMO和MISO。针对云图运动特点,在MISO框架下结合MIMO与SISO两种框架特性设计了一种基于隐式自回归时空通道聚合策略的云图预测算法(IASCACP)。针对MIMO类模型存在的图像关联性缺失以及SISO类模型存在的误差累积过量的问题,引入一种隐式自回归编解码器,利用隐式自回归结构为模型赋予一定的递归特性以捕获序列中的时空关联信息,再用掩码与真实映射模块减少递归带来的误差累积,增强模型鲁棒性;针对云运动不稳定与非线性等问题,设计了一种时空通道聚合预测器,该模块可以有效聚合多阶时空相互作用信息,并对其进行自适应通道再分配以减少特征冗余。将该算法分别在MovingMNIST 数据集及 FY-4A 卫星云图数据集上进行实验,实验结果表明,该算法有效改进了MIMO与SISO类模型的缺点,预测精度高于其他模型,体现了该模型在云图预测领域的可靠性与有效性。

    Abstract:

    The essence of cloud image prediction is spatiotemporal sequence prediction. Deep learning-based spatiotemporal sequence prediction algorithms can be categorized into three frameworks: SISO, MIMO and MISO. Based on the characteristics of cloud image movement, designed a cloud image prediction algorithm under the MISO framework, combining the features of both MIMO and SISO frameworks, called the implicit autoregressive spatiotemporal channel aggregation prediction (IASCACP) algorithm. To address the issue of image correlation loss in MIMO models and excessive error accumulation in SISO models, introduce an implicit autoregressive encoder-decoder. This encoder-decoder endows the model with certain recursive properties through an implicit autoregressive structure to capture spatiotemporal correlation information in sequences. Additionally, a masking and true mapping module is used to reduce error accumulation from recursion and enhance model robustness. To tackle issues such as instability and nonlinearity in cloud movement, we designed a spatiotemporal channel aggregation predictor. This module effectively aggregates multi-order spatiotemporal interaction information and performs adaptive channel reallocation to reduce feature redundancy. The algorithm was tested on the MovingMNIST dataset and the FY-4A satellite cloud image dataset. Experimental results show that this algorithm effectively improves the shortcomings of MIMO and SISO models and achieves higher prediction accuracy compared to other models, demonstrating its reliability and effectiveness in the field of cloud image prediction.

    参考文献
    相似文献
    引证文献
引用本文

吴禹乾,张秀再,李景轩.基于隐式自回归时空通道聚合策略的多输入单输出云图预测算法[J].电子测量技术,2025,48(9):140-148

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码