施工环境中安全帽和反光衣轻量化检测方法
DOI:
CSTR:
作者:
作者单位:

1.重庆交通大学经济与管理学院 重庆 400074;2.重庆渝湘复线高速公路有限公司 重庆 401121; 3.重庆交通大学交通运输学院 重庆 400074

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

国家自然科学基金青年项目(72204033)、重庆市交通科技自筹项目(CQJT2022ZC23)、教育部人文社会科学研究青年基金项目(21YJC630169)、中国博士后科学基金面上项目(2022M711457)、重庆市自然科学基金面上项目(cstc2021jcyj-msxmX1010)资助


Lightweight detection method for safety helmet and reflective vest in construction environments
Author:
Affiliation:

1.School of Economics and Management, Chongqing Jiaotong University,Chongqing 400074,China; 2.Chongqing Yuxiang DoubleTrack Expressway Co., Ltd.,Chongqing 401121,China; 3.School of Traffic & Transportation, Chongqing Jiaotong University,Chongqing 400074,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决施工环境中现有安全帽和反光衣检测算法参数量和计算量大、检测精度低以及模型较大难以高效部署等问题,提出改进CCEI-YOLOv8轻量化检测算法。在骨干网络和颈部网络中采用C2f-CIB模块;重构颈部网络,形成跨尺度特征融合模块(CCFM);引入EMA坐标注意力机制;将CIoU替换为Inner-EIoU,提高回归定位精确度。以Roboflow开源安全帽和反光衣数据集为基础,验证改进方法的有效性。实验结果表明,CCEI-YOLOv8检测算法相较于原始YOLOv8n,参数量降低了48.3%、计算量下降了32.1%、平均检测精度均值mAP@50提高了0.5%,达到了91.7%,模型仅为3.442 MB,减少了45%。CCEI-YOLOv8检测算法在检测性能和轻量化方面均优于原始YOLOv8n检测算法和其他主流的目标检测算法,更适用于项目的实时检测和部署,为安全帽和反光衣的实时检测提供参考。

    Abstract:

    To address the issues of large parameter and computation requirements, low detection accuracy, and the difficulty of efficiently deploying large models in safety helmet and reflective vest detection, an improved lightweight detection algorithm, CCEI-YOLOv8, is proposed. In this algorithm, the C2f-CIB module is adopted in the backbone and neck networks; the neck network is reconstructed with a cross-scale feature fusion module(CCFM); the EMA coordinate attention mechanism is introduced; and CIoU is replaced with Inner-EIoU to enhance regression localization accuracy. The effectiveness of the proposed algorithm is demonstrated through experiments conducted on the open-source Roboflow dataset for safety helmets and reflective vests. The results show that the algorithm achieves significant improvements: Parameters are reduced by 48.3%; computation is decreased by 32.1%; and the mean Average Precision(mAP@50) is increased by 0.5%, reaching 91.7%. The model size is reduced to only 3.442 MB, a decrease of 45%. Compared to the original YOLOv8n and other mainstream detection algorithms, CCEI-YOLOv8 demonstrates superior detection accuracy and lightweight design. This makes it highly suitable for real-time detection and deployment, providing a valuable reference for the real-time detection of safety helmets and reflective vests.

    参考文献
    相似文献
    引证文献
引用本文

张羽,刘皓洋,贾升凯,翁乾,张河山.施工环境中安全帽和反光衣轻量化检测方法[J].电子测量技术,2025,48(8):133-143

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码