基于YOLO轻量化的水下管桩裂缝检测方法
DOI:
CSTR:
作者:
作者单位:

1.浙江科技大学机械与能源工程学院 杭州 310018;2.浙大宁波理工学院机电与能源工程学院 宁波 315100

作者简介:

通讯作者:

中图分类号:

TV36;TN0

基金项目:

浙江省“领雁”重大专项计划项目(2023C03122)、宁波市重点研发计划暨“揭榜挂帅”第一批立项项目(2022Z172)资助


Crack detection method of underwater pipe pile based on YOLO lightweight
Author:
Affiliation:

1.School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology,Hangzhou 310018, China; 2.School of Mechatronics and Energy Engineering, Ningbo Institute of Technology, Zhejiang University,Ningbo 315100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于机器视觉的水下管桩裂缝检测在工作时往往面临着嵌入式设备计算资源有限、实时检测速度慢的问题,为了解决这些问题本文提出了基于管桩清洗机器人的管桩裂缝自动识别方法。设计了一种轻量化网络检测算法 YOLOv8-MLLA-Mobilenetv4-WIoU(MWM-YOLO)。在水下环境拍摄获取低质缺陷图像并进行数据增强,扩充数据集;针对浑水下低质图像,针对图像增强与目标检测不匹配所导致的抑制作用,利用MLLA自注意力精准聚焦关键特征区域,在保持高分辨率输出的同时,有效抑制背景干扰,从而增强图像增强与目标检测的协同作用。同时采用最新的Mobilenetv4主干网络,降低特征网络的参数量和计算量。在此基础上,考虑低质图像数据标注难免包含低质量示例,使用 WIoU损失函数替换原YOLOv8网络模型中的损失函数,提高模型泛化性能。实验结果表明:MWM-YOLO模型权重大小为14.9 MB,较原模型减少了30.3%。平均精度达到了89.1%,推理速度为137.54 fps,优于其他模型。改进后的网络模型相比原网络,在保持缺陷识别精度的同时,可以轻量化部署到边缘计算设备,为水下管桩清洗机器人提供技术支持。

    Abstract:

    In order to solve these problems, this paper proposes an automatic identification method for pipe pile cracks based on pipe pile cleaning robots. A lightweight network detection algorithm YOLOv8-MLLA-Mobilenetv4-WIoU(MWM-YOLO) was designed. Capture low-quality defect images in a muddy water environment and augment the data to expand the dataset. For low-quality images under muddy water, in view of the suppression effect caused by the mismatch between image enhancement and object detection, MLLA is used to accurately focus on key feature areas, which can effectively suppress background interference while maintaining high-resolution output, so as to enhance the synergy between image enhancement and object detection. At the same time, the latest Mobilenetv4 backbone network is used to reduce the number of parameters and calculations of the characteristic network. On this basis, considering that low-quality image data annotation inevitably contains low-quality examples, the WIoU loss function is used to replace the loss function in the original YOLOv8 network model to improve the generalization performance of the model. The experimental results show that the weight of the MWM-YOLO model is 14.9 MB, which is 30.3% less than that of the original model. The average accuracy reached 89.1%, and the inference speed was 137.54 fps, which was better than other models. Compared with the original network, the improved network model can be lightweight deployed to edge computing devices while maintaining the accuracy of defect identification, providing technical support for underwater pipe pile cleaning robots.

    参考文献
    相似文献
    引证文献
引用本文

陈潇威,宋瑞银,吴瑞明,李凤甡,王天恒.基于YOLO轻量化的水下管桩裂缝检测方法[J].电子测量技术,2025,48(17):178-187

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告