基于人工智能模型的婴幼儿行为监护系统
DOI:
CSTR:
作者:
作者单位:

西南交通大学希望学院轨道交通学院 成都 610400

作者简介:

通讯作者:

中图分类号:

TN014

基金项目:

四川省第一批现场工程师专项培养计划项目(教职成厅函〔2023〕6号)资助


Infant behavior monitoring system based on artificial intelligence models
Author:
Affiliation:

School of Rail Transit, Southwest Jiaotong University Hope College,Chengdu 610400, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着人工智能技术的发展,婴儿监护系统在生活中的应用日益普及,本文设计了一种基于人工智能的婴幼儿行为监护系统,利用计算机视觉技术和深度学习算法,结合Raspberry Pi 4B、Camera V2等硬件设备,实现对婴幼儿行为的实时监测与智能分析。系统通过Google MediaPipe姿态识别算法提取婴幼儿关节特征并结合设置的安全范围,采用优化后的Moondream 2模型进行多模态数据推理,显著提升系统实时性和准确性。系统引入轻量化时间序列分析模块以增强行为变化的敏感度以及动态预警功能的集成,确保监护系统的高效、可靠。通过Home Assistant平台、MQTT协议及内网穿透技术,系统支持远程访问与实时通知功能。实验结果表明,系统在准确性及稳定性方面表现良好,可广泛应用于家庭监护和智能看护场景,为婴幼儿的安全管理提供了新型解决方案。

    Abstract:

    With the advancement of artificial intelligence technology, baby monitoring systems have become increasingly prevalent in daily life. This paper presents an AI-based infant behavior monitoring system that utilizes computer vision techniques and deep learning algorithms, integrated with hardware components such as the Raspberry Pi 4B and Camera V2, to achieve real-time monitoring and intelligent analysis of infant behavior. The system employs the Google MediaPipe pose recognition algorithm to extract infant joint features within predefined safety zones and uses an optimized Moondream 2 model for multimodal data inference, significantly enhancing the system′s real-time responsiveness and accuracy. Additionally, the system incorporates a lightweight time-series analysis module to improve sensitivity to behavioral changes and integrates dynamic alert functions to ensure efficient and reliable monitoring. By leveraging the Home Assistant platform, MQTT protocol, and network tunneling technology, the system supports remote access and real-time notification capabilities. Experimental results demonstrate excellent performance in terms of accuracy and stability, making the system widely applicable in home monitoring and intelligent caregiving scenarios, and providing a novel solution for the safety management of infants and young children.

    参考文献
    相似文献
    引证文献
引用本文

舒锐,傅铭伟,彭挺,李永康,杨波.基于人工智能模型的婴幼儿行为监护系统[J].电子测量技术,2025,48(7):107-116

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码