改进YOLOv8s的校园智能清扫车障碍物检测与测距算法
DOI:
CSTR:
作者:
作者单位:

1.河南科技大学车辆与交通工程学院 洛阳 471000;2.河南科技大学智能农业装备全国重点实验室 洛阳 471000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN914

基金项目:

国家自然科学基金(51675163)项目资助


Improve the obstacle detection and ranging algorithm of YOLOv8s campus intelligent sweeper
Author:
Affiliation:

1.College of Vehicle and Traffic Engineering, Henan University of Science and Technology,Luoyang 471000, China; 2.State Key Laboratory of Intelligent Agricultural Power Equipment, Henan University of Science and Technology,Luoyang 471000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对校园智能清扫车障碍物检测精确度低、检测速度慢以及模型复杂度高的问题,提出一种改进YOLOv8s的校园智能清扫车障碍物检测与测距算法YOLOv8s-FDR。在YOLOv8s算法框架的基础上,将主干网络替换为参数量和内存访问量更小的FasterNet网络,以降低模型复杂度并提高检测速度;然后设计了SPPF-DAM模块,以残差方式引入可变形注意力机制,提高模型对多尺度目标特征的感知能力;其次,在特征融合网络中采用Partial-RFEM进行下采样,以捕获非局部上下文特征和局部目标特征,提高检测精确度;最后,添加了测距功能,降低硬件成本。实验结果表明,改进算法与原算法相比mAP提高了3.6%,模型计算量和参数量相较于原模型分别降低了19.72%和15.27%。实际环境测试显示,YOLOv8s-FDR算法的检测速度达到38.44 fps,远高于原算法的17.12 fps,能够满足校园智能清扫车正常运行的性能要求。

    Abstract:

    In order to solve the problems of low accuracy, slow detection speed and high model complexity of obstacle detection of campus intelligent sweepers, a modified YOLOv8s obstacle detection and ranging algorithm for campus intelligent sweepers YOLOv8s-FDR was proposed. On the basis of the YOLOv8s algorithm framework, the backbone network is replaced by the FasterNet network with smaller parameters and memory access, so as to reduce the complexity of the model and improve the detection speed. Then, the SPPF-DAM module was designed to introduce the deformable attention mechanism (DAM) in the form of residuals to improve the model′s perception of multi-scale target features. Secondly, Partial-RFEM was used for downsampling in the feature fusion network to capture the non-local context features and local target features to improve the detection accuracy. Finally, the ranging function is added to reduce hardware costs. Experimental results show that compared with the original algorithm, the mAP of the improved algorithm is increased by 3.6%, and the amount of model computation and parameters is reduced by 19.72% and 15.27%, respectively. The actual environment test shows that the detection speed of the YOLOv8s-FDR algorithm reaches 38.44 fps, which is much higher than the 17.12 fps of the original algorithm, which can meet the performance requirements of the normal operation of the campus intelligent sweeper.

    参考文献
    相似文献
    引证文献
引用本文

郭志军,叶世文,庞明天,王丁健,杜林林.改进YOLOv8s的校园智能清扫车障碍物检测与测距算法[J].电子测量技术,2025,48(10):33-41

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告