基于CPM-YOLO的道路头盔检测方法
DOI:
CSTR:
作者:
作者单位:

1.太原科技大学机械工程学院 太原 030024;2.重型装备智能化技术与系统山西省重点实验室 太原 030024

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

国家自然基金(U24A20276)、国家自然基金面上项目(52274389)、山西省关键核心技术和共性技术研发攻关专项(2020XXX009)、山西省重点研发计划(202102010101010,202202150401010)项目资助


Road helmets detection method based on CPM-YOLO
Author:
Affiliation:

1.School of Mechanical Engineering, Taiyuan University of Science and Technology,Taiyuan 030024, China; 2.Shanxi Key Laboratory of Intelligent Technology and Systems for Heavy Equipment,Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    头盔检测往往面临交通拥挤、行人干扰、目标严重遮挡等复杂的道路场景,这些情况容易导致检测精度低、检测错误和漏检。提出了一种基于CPM-YOLO算法的高性能头盔识别模型。首先,提出新的跨尺度特征融合方法CS-FPN,更好地整合高阶语义和低阶几何特征信息;其次,提出PCT的模块,优化模型的特征提取能力;接着,选用最小点距离的边界框回归损失函数进一步提高模型的收敛速度和准确率;之后,删除骨干网络中20×20的下采样部分和20×20的检测头,新增160×160的小目标检测头;最后,通过消融实验证明各个改进模块对提升模型性能的有效性,通过对比实验证明CPM-YOLO模型的优越性与泛化性。实验结果表明,与基线模型相比,本研究方法的mAP@0.5提高了5.5%,参数数量和模型尺寸分别减少了69.9%和67.2%。新模型具有显著降低复杂度和提高道路头盔检测能力的特点。

    Abstract:

    Helmet detection often faces challenges in complex road scenarios such as heavy traffic, pedestrian interference, and severe occlusion of targets. These conditions can easily lead to low detection accuracy, false detections, and missed detections. This paper proposes a high-performance helmet recognition model based on the CPM-YOLO algorithm. First, a novel cross-scale feature fusion method, CS-FPN, is proposed to better integrate high-level semantic and low-level geometric feature information. Next, the PCT module is introduced to optimize feature extraction capabilities of the model. Additionally, a bounding box regression loss function based on the minimum point distance is adopted to enhance the model′s convergence speed and accuracy. Furthermore, the 20×20 downsampling layer and 20×20 detection head in the backbone network are removed, and a new 160×160 small-object detection head is introduced. Finally, ablation studies validate the effectiveness of each improved module in enhancing the model′s performance, and comparative experiments demonstrate the superiority and generalizability of the CPM-YOLO model.Experimental results show that compared to the baseline model, the proposed method achieves improvements of 5.5% in mAP@0.5. Additionally, the number of parameters and model size are reduced by 69.9% and 67.2%, respectively. The new model significantly reduces complexity while enhancing helmet detection capabilities in road environments.

    参考文献
    相似文献
    引证文献
引用本文

强浩南,邹涌波,马立东,李博文.基于CPM-YOLO的道路头盔检测方法[J].电子测量技术,2025,48(7):152-162

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码