基于锚点辅助与细粒度多尺度特征的违禁品检测
DOI:
CSTR:
作者:
作者单位:

1.河北工程大学信息与电气工程学院 邯郸 056038;2.邯郸学院河北省光纤生物传感与通信器件重点实验室 邯郸 056005; 3.邯郸学院信息工程学院 邯郸 056005

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

国家自然科学基金(62101174)、河北省高等学校科学技术研究项目(BJK2022025)、河北省光纤生物传感与通信器件重点实验室项目(SZX2022010)资助


X-ray prohibited detection method based on anchor-aided and granular level multi-scale features
Author:
Affiliation:

1.School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,China; 2.Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices,Handan University,Handan 056005,China; 3.School of Information Engineering,Handan University,Handan 056005,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前X光违禁物品之间遮挡、噪声干扰和检测精度低等问题,以YOLOv8s网络为基础模型,提出一种融合了锚点辅助训练策略和细粒度多尺度特征的违禁品检测模型。在网络中采用C3_Res2Net模块替换C2f模块,通过集成不同层次的特征来增强多尺度,以增加网络层的感受野范围,获取细粒度层面的特征,解决违禁品之间存在遮挡带来检测精度低问题;采用滑动平均的Slide Loss目标类别损失函数和改进的边框损失函数尝试为困难样本分配更高的权重,降低高质量锚框的竞争力的同时,减小了低质量示例产生的有害梯度,同时聚焦于普通质量的锚框,提高检测器的整体性能,使得具有更好的抗噪声干扰能力;在训练前期使用ATSS和Task-Aligned Assigner协同训练机制的标签分配策略,利用Anchor-based的预设信息,达到稳定模型训练的目的;在训练的后期采用锚点辅助训练策略充分发挥了结合不同Anchor网络的各自优势,从而进一步提升了模型检测精度。本文所改进模型在公开数据集SIXray、HiXray上进行了训练和测试,mAP50分别达到94.9%、83.7%,mAP50:95为73.1%、52.2%。结果表明,本文所改进模型具有较高的检测准确性和稳定性。

    Abstract:

    Aiming at the current problems of occlusion, noise interference and low detection accuracy between prohibited X-ray objects, a contraband detection model integrating anchor-aided training strategy and fine-grained multi-scale features was proposed based on the YOLOv8s network. In the network, the C3_Res2Net module is used to replace the C2f module. By integrating features at different levels to enhance multi-scale, the receptive field range of the network layer is increased, and features at the fine-grained level are obtained to solve the problem of low detection accuracy caused by occlusion between contraband items;the sliding average Slide Loss target category loss function and the improved border loss function are used to try to assign higher weights to difficult samples, which reduces the competitiveness of high-quality anchor frames while reducing the harmful gradients generated by low-quality examples. At the same time, the focus is on anchor frames of ordinary quality to improve the overall performance of the detector and make it have better anti-noise interference ability; in the early stages of training, the ATSS(Adaptive Training Sample Selection) and Task-Aligned Assigner collaborative label assignment strategies are used, leveraging anchor-based preset information to stabilize model training; in the later training stages, an anchor-aided training strategy further enhances detection accuracy by exploiting the respective advantages of various anchor networks; the improved model was trained and tested on the public SIXray and HiXray datasets, achieving mAP50 scores of 94.9% and 83.7%, and mAP50:95 scores of 73.1% and 52.2%, respectively. The results demonstrate that the proposed model offers high accuracy and stability in contraband detection.

    参考文献
    相似文献
    引证文献
引用本文

黎作鹏,刘佳祥,张少文.基于锚点辅助与细粒度多尺度特征的违禁品检测[J].电子测量技术,2025,48(8):154-164

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码