基于GDDL-YOLOv8n的番茄叶病害轻量化检测算法
DOI:
CSTR:
作者:
作者单位:

1.宁夏师范大学物理与电子信息工程学院 固原 756000; 2.宁夏师范大学 固体微结构与功能实验室 固原 756000

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

宁夏师范大学校级科研项目(XJZDD2311)资助


Lightweight detection algorithm for tomato leaf diseases based on GDDL-YOLOv8n
Author:
Affiliation:

1.School of Physics and Electronic Information Engineering, Ningxia Normal University,Guyuan 756000, China; 2.Laboratory of Solid State Microstructure and Function, Ningxia Normal University,Guyuan 756000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自然环境中番茄叶病害检测识别精度低、效果差的问题,提出了一种基于优化YOLOv8的番茄叶病害检测模型——GDDL-YOLOv8n。该模型通过采用GhostHGNetV2改进原有的主干网络,C2f-DWR-DRB改进颈部网络特征融合,并创新性地引入LSCG检测头,成功实现了模型的轻量化与高精度的检测效果。实验结果表明,GDDL-YOLOv8n模型在参数数量上下降了49.13%,计算量减少了37.04%,模型内存占用量降低了46.67%,同时保持了高精度的检测性能,mAP@0.5达到了98.4%,mAP@0.5-0.95达到了92.3%。此外本研究还开发了一个基于PyQt5的用户友好界面系统,支持图片、视频检测以及摄像头实时跟踪识别功能,农业智能化管理和番茄叶部病害识别技术得到了显著增强,模型更为轻量化极大地促进了这些技术在实际生产中的应用。

    Abstract:

    In order to solve the problems of low accuracy and poor effect of tomato leaf disease detection in natural environment, a tomato leaf disease detection model based on optimized YOLOv8 was proposed, namely GDDL-YOLOv8n. In this model, the original backbone network is improved by using GhostHGNetV2, C2f-DWR-DRB is used to improve the neck network feature fusion, and the Lightweight Shared-Convolutional detection head (LSCG) is innovatively introduced. The lightweight and high-precision detection effect of the model has been successfully realized. Experimental results show that the GDDL-YOLOv8n model decreases by 49.13% in the number of parameters, 37.04% in the amount of computation, and 46.67% in the memory occupation of the model, while maintaining the high-precision detection performance, with the mAP@0.5 reaching 98.4% and the mAP@0.5-0.95 reaching 92.3%. In addition, a user-friendly interface system based on PyQt5 was developed, which supports image and video detection and camera real-time tracking and recognition functions, and the intelligent management of agriculture and the identification technology of tomato leaf disease have been significantly enhanced, and the model is lighter, which greatly promotes the application of these technologies in actual production.

    参考文献
    相似文献
    引证文献
引用本文

胡艳茹,刘德全.基于GDDL-YOLOv8n的番茄叶病害轻量化检测算法[J].电子测量技术,2025,48(18):29-40

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告