多策略改进PSO的非晶干式变压器优化设计
DOI:
CSTR:
作者:
作者单位:

江西理工大学电气工程与自动化学院 赣州 341000

作者简介:

通讯作者:

中图分类号:

TM412;TN99

基金项目:

国家自然科学基金(52167017)、江西省自然科学基金(20224BAB204054)、赣鄱俊才支持计划(202321BCJ22006)项目资助


Optimization design of amorphous dry-type transformer based on multi-strategy improved PSO
Author:
Affiliation:

School of Electrical Engineering and Automation, Jiangxi University of Science and Technology,Ganzhou 341000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决变压器优化设计过程中存在周期冗长、效率低下及制造成本和能耗高等问题,采用一种多策略改进粒子群优化算法,结合Visual Basic 60软件实验平台开发的优化系统,对非晶合金干式变压器(简称非晶干变)的参数进行优化。该算法采用多策略结合,在粒子初始化阶段应用Logistic-Tent混沌映射来提升粒子初始多样性,并构建动态学习因子与非线性动态惯性权重系数,以提升局部寻优精确度、增强其全局寻优能力。以SCLBH19.400/10非晶干变为优化实例,分别采用粒子群、量子粒子群、自适应粒子群、混沌粒子群和多策略改进粒子群优化算法进行参数优化仿真实验。实验结果表明,与传统人工设计方案、传统粒子群算法以及其他3种改进粒子群算法优化方案相比,多策略改进粒子群算法优化方案能提高计算效率,减少非晶干变总损耗15.41%和主材成本14.81%,验证了多策略改进粒子群算法的有效性和优越性。

    Abstract:

    To address the challenges associated with long cycle times, low efficiency, high manufacturing cost, and significant energy consumption in the optimization design of transformer, a multi-strategy improved particle swarm optimization algorithm has been utilized. This algorithm is used to optimize the parameters of amorphous alloy dry-type transformer (designated as AMDT) in combination with an optimization system developed on the Visual Basic 6.0 software experimental platform. During the particle initialization stage, the Logistic-Tent chaotic map is applied to improve the initial diversity of the particles. Additionally, the dynamic learning factor and the nonlinear dynamic inertia weight coefficient are developed to improve the local optimization accuracy and enhance its global optimization ability. The optimization of the SCLBH19.400/10 amorphous dry-type serve as a case study, the particle swarm optimization, quantum particle swarm optimization, adaptive particle swarm optimization, chaotic particle swarm optimization, and multi-strategy improved particle swarm optimization algorithm are used to optimize the parameters. The experimental results show that compared with the traditional artificial design scheme, the traditional particle swarm optimization algorithm, and the other three improved particle swarm optimization algorithm optimization schemes, the multi-strategy improved particle swarm optimization algorithm significantly and improve computational efficiency. It achieves a reduction in total loss associated with amorphous dry-type transformer by 15.41% and decreases the main material cost by 14.81%. These results substantiate the effectiveness and superiority of the multi-strategy improved particle swarm optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘道生,王永胜,黄国轩,刘龙生.多策略改进PSO的非晶干式变压器优化设计[J].电子测量技术,2025,48(11):49-58

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码