基于深度学习与聚类的开集个体识别技术
DOI:
CSTR:
作者:
作者单位:

1.中国电子科技集团公司第五十四研究所 石家庄 050051;2.河北省电磁频谱认知与管控重点实验室 石家庄 050051

作者简介:

通讯作者:

中图分类号:

TN92;TP183

基金项目:

国家自然科学基金-联合基金(U20B2071)项目资助


An open set SEI method based on deep learning and clustering
Author:
Affiliation:

1.The 54th Research Institute of CETC,Shijiazhuang 050051, China;2.Hebei Province Key Laboratory of Electromagnetic Spectrum Cognition and Control,Shijiazhuang 050051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对开集场景下闭集网络无法有效识别未知类的问题,本研究提出了一种基于深度学习与无监督聚类相结合的辐射源开集个体识别(SEI)方法。通过对原始数据进行精细化的预处理以提取蕴含指纹特征的常规特征波形,将常规特征波形进行闭集网络训练,基于概率度量手段对待识别类样本进行已知/未知判决,对识别成未知类的样本提取残差网络全连接层特征进行无监督降维、聚类处理,通过聚类结果明确未知个体数量。实验结果表明,相对于传统闭集网络识别,本研究所提方法能够在已知类准确识别的前提下,实现对已知/未知类的有效区分,识别正确率均在97%以上,并能准确识别10个未知电台数目,实验结果验证了方法的有效性。

    Abstract:

    For the problem that closed set networks cannot effectively identify unknown classes in open set scenarios, an open set specific emitter identification(SEI )method based on the combination of deep learning and unsupervised clustering was proposed. The original data is refined to extract the conventional features containing fingerprint features, and the conventional feature waveform is trained in the closed set network,based on probability measures, the known and unknown decisions are carried out on the identification class samples, and unsupervised dimension reduction and clustering are carried out on the features of the full connection layer of the residual network extracted from the samples identified as unknown classes. The number of unknown individuals was clarified the clustering results. The experimental results show that compared with traditional closed set recognition, the proposed method can realize the effective classification between known classes and unknown classes ,under the known classes accurate recognition, the recognition accuracy is more than 97%, and ten unknown radios can be accurately clarified,experimental results verify the effectiveness of the method。

    参考文献
    相似文献
    引证文献
引用本文

未争超,乔强,郎俊杰,杨鸿杰.基于深度学习与聚类的开集个体识别技术[J].电子测量技术,2025,48(5):111-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-17
  • 出版日期:
文章二维码