基于LACNN的FMCW雷达实时跌倒检测方法
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650500; 2.云南省高校物联网技术及应用重点实验室 昆明 650500

作者简介:

通讯作者:

中图分类号:

TN959;TP391

基金项目:


Real-time fall detection method for FMCW radar based on LACNN
Author:
Affiliation:

1.College of Information, Yunnan University,Kunming 650500, China; 2.University Key Laboratory of Internet of Things Technology and Application,Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的雷达跌倒检测方法存在计算复杂度过高、参数量庞大的问题,本文提出了轻量级自适应卷积神经网络——LACNN。首先,从FMCW雷达采集到的人体活动回波信号中提取出微多普勒特征。其次,使用改进的轻量级ShuffleNet网络对特征进行初步提取。然后,使用轻量级通道-空间注意力模块与高效的不对称卷积核并行多尺度特征提取模块对特征进行精细化处理。为了提高模型的泛化能力,模型中嵌入了卷积批量归一化AconC模块。最后,融合的特征被送入全连接层进行检测。与其他网络模型的比较结果显示,所提出的模型F1分数达到了99.33%,提高了0.61%~4.10%,同时保持更低的计算成本,FLOPs仅为1.047 M,模型参数量仅为69.09 M。

    Abstract:

    Aiming at the problems of excessive computational complexity and large number of parameters in existing radar fall detection methods, this paper proposes a lightweight adaptive convolutional neural network, LACNN.Firstly, micro-Doppler features are extracted from the human activity echo signals acquired by the FMCW radar. Secondly, Initial extraction of features using an improved lightweight ShuffleNet network. Then, the features are refined using a lightweight channel-space attention module with an efficient asymmetric convolutional kernel parallel multi-scale feature extraction module. To improve the generalisation ability of the model, a convolutional batch normalization AconC module is embedded in the model. Finally, the fused features are fed into the fully connected layer for detection. Comparison results with other network models show that the proposed model achieves an F1 score of 99.33%, which is an improvement of 0.61%~4.10%, while maintaining a lower computational cost, with FLOPs of only 1.047 M and model parametric quantities of only 69.09 M.

    参考文献
    相似文献
    引证文献
引用本文

罗彬,常俊,孙江黎,李栋.基于LACNN的FMCW雷达实时跌倒检测方法[J].电子测量技术,2025,48(4):35-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码