面向复杂环境的改进YOLOv5安全帽检测算法
DOI:
CSTR:
作者:
作者单位:

广西大学电气工程学院 南宁 530004

作者简介:

通讯作者:

中图分类号:

TN391

基金项目:

国家自然科学基金(51767005)项目资助


Improved YOLOv5 safety helmet detection algorithm for complex environments
Author:
Affiliation:

School of Electrical Engineering, Guangxi University,Nanning 530004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对施工工人的安全帽佩戴检测是保障人员安全的重要方法,但现有的安全帽检测大多为人工检测,不仅耗时费力且效率低下。且目前存在的算法在面对复杂的环境或者天气下,存在检测精度低等问题。针对这一现象,基于YOLOv5s算法提出一种改进的安全帽佩戴检测算法。首先,基于残差思想和大型可分离模块设计提出SLSKA-POOL模块,并在池化层使用,该模块可以使网络更加关注目标特征,进一步提高网络能力;其次,提出CAKConv卷积模块,该模块通过不规则的卷积操作高效的提取特征,以提高网络性能;最后,在主干添加EMA模块,聚合多尺度空间结构信息,建立长短依赖关系,以获得更好的性能。实验结果表明:改进的YOLOv5与原算法相比,检测精度提升2.2%,mAP@0.5提升了3.6%,mAP@0.5:0.95提升了6.4%,实现了更准确高效的安全帽佩戴检测。

    Abstract:

    Detecting the wearing of safety helmets by construction workers is an important method to ensure personnel safety. However, existing safety helmet detection methods are mostly manual, which are not only time-consuming and labor-intensive but also inefficient. Moreover, the existing algorithm has low detection accuracy in the face of complex environment or weather. In response to this phenomenon, an improved safety helmet wearing detection algorithm is proposed based on the YOLOv5s algorithm. Firstly, the SLSKA-POOL module is proposed based on the residual idea and large separable module design, and used in the pooling layer. This module can make the network pay more attention to the target features and further improve the network capability; secondly, the CAKConv convolutional module is proposed, which efficiently extracts features through irregular convolution operation to improve the network performance; finally, EMA modules are added to the backbone to aggregate multi-scale spatial structure information and establish short and short dependencies to achieve better performance. The experimental results show that: the improved YOLOv5 compared with the original algorithm, The detection accuracy increased by 2.2%, mAP@0.5 increased by 3.6%, and mAP@ 0.5:0.95 increased by 6.4%, realizing more accurate and efficient helmet wearing detection.

    参考文献
    相似文献
    引证文献
引用本文

宋春宁,李寅中.面向复杂环境的改进YOLOv5安全帽检测算法[J].电子测量技术,2025,48(7):163-170

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码