融合多尺度特征和自适应NMS的3D目标检测
DOI:
CSTR:
作者:
作者单位:

1.贵州大学大数据与信息工程学院 贵阳 550025;2.贵州大学公共大数据国家重点实验室 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TN958.98

基金项目:

贵州省科学技术基金(黔科合基础[2016]1054)、贵州省普通高等学校工程研究中心项目(黔教合KY字[2018]007)资助


3D object detection on fusing multi-scale features and adaptive NMS
Author:
Affiliation:

1.College of Big Data and Information Engineering, Guizhou University,Guiyang 550025, China; 2.State Key Laboratory of Public Big Data, Guizhou University,Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    3D目标检测是自动驾驶感知系统的关键技术之一,能准确检测驾驶环境的状态从而保证行车安全。针对自动驾驶场景中行人和骑行者等小目标的3D检测精度较低的问题,提出一种基于多尺度特征和自适应非极大值抑制的3D目标检测算法。首先,设计多尺度特征提取器,以获取大、中、小尺度的特征。其次,设计多尺度检测头以生成不同尺寸目标的候选框,从而补充小目标候选框。为了平衡多尺度候选框的数量,设计一种基于ANMS的候选框筛选算法,提高了对不同尺寸目标的检测精度。在KITTI数据集上的结果表明,改进算法在确保汽车类目标检测精度的同时,对行人和骑行者的检测精度达到62.57%和73.30%,比基线算法高2.04%和1.33%,验证了改进算法在小目标检测方面具有较好的3D检测性能。

    Abstract:

    3D object detection is a critical technology for automatic driving perception systems, which accurately detects the state of the driving environment and ensures the safety of driving. Aiming at the problem of low 3D detection accuracy of small objects such as pedestrians and cyclists, a 3D object detection algorithm based on multi-scale features and adaptive non-maximum suppression (ANMS) is proposed. Firstly, a multi-scale feature extractor is designed to obtain large, medium, and small-sized features. Secondly, a multi-scale detection head is constructed to generate the candidate boxes of objects of different sizes, thereby supplementing the candidate boxes of small objects. To balance the number of multi-scale candidate boxes, a candidate box screening algorithm on ANMS is designed, enhancing the detection accuracy of objects of different sizes. The results on the KITTI dataset indicate that the improved algorithm achieves 62.57% and 73.30% detection accuracy for pedestrians and cyclists, which is 2.04% and 1.33% higher than the baseline while ensuring the detection accuracy of car-type objects, which verifies that the improved algorithm has preferable 3D detection performance in small object detection.

    参考文献
    相似文献
    引证文献
引用本文

张李辉,刘紫燕.融合多尺度特征和自适应NMS的3D目标检测[J].电子测量技术,2025,48(4):191-198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码