基于超参数优化的重质碳酸钙粉体粒度预测研究
DOI:
CSTR:
作者:
作者单位:

1.广西大学机械工程学院 南宁 530004; 2.广西石化资源加工及过程强化技术重点实验室 南宁 530004

作者简介:

通讯作者:

中图分类号:

TP183;TN06

基金项目:

国家自然科学基金(20200555)、广西科技重大专项(桂科 AA19254010)资助


Research on the prediction of particle size of heavy calcium carbonate powder based on hyperparameter optimization
Author:
Affiliation:

1.School of Mechanical Engineering, Guangxi University,Nanning 530004, China; 2.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology,Nanning 530004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    重质碳酸钙粉磨系统中,粒度是衡量产品质量的关键指标之一,准确预测粒度有助于控制产品质量并指导立磨(VRM)进行参数调节。因此,该研究提出了一种基于常春藤算法(IVYA)的双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)相结合的重钙粉体粒度预测模型。首先对特征和标签数据进行预处理,利用时变滤波经验模态分解联合小波阈值去除分级机电流中的高频噪声;然后通过BiTCN从前后两个方向挖掘时间序列中多维特征间的关联性,在BiGRU输出端融入注意力模块赋予每一个位置不同的权重,从而有效关注序列中的的关键数据。其次,在整个模型上引入IVYA寻找神经网络中关键超参数的最优解。最后,以某碳酸钙粉磨工厂实测数据为例进行模型实验。实验表明,IVYA优化后的模型相比较于其他单一模型和组合模型具有更高的预测性能,其均方根误差、平均绝对误差、平均相对百分误差和决定系数分别为:0.824 4、0.423 0、1.295 4%、98.95%。

    Abstract:

    In the grinding system of heavy calcium carbonate, particle size was esteemed as a crucial metric for assessing product quality. The precise prediction of particle size was deemed instrumental in controlling product quality and informing the adjustments of vertical roller mill (VRM) parameters. Therefore, the study proposed a model for predicting the particle size of heavy calcium powder, which combined the bidirectional time convolutional network (BiTCN) based on the ivy algorithm (IVYA) with the bidirectional gated recurrent unit (BiGRU). Initially, feature and label data were subjected to preprocessing, employing time-varying filtering empirical mode decomposition in conjunction with wavelet thresholding to eliminate high-frequency noise from the primary current of the vertical mill. Then, the correlations between multidimensional features in the time series were explored from both forward and backward directions through BiTCN. At the output end of BiGRU, an attention module was incorporated to assign different weights to each position, thereby effectively focusing on the key data in the sequence. Finally, the IVYA was integrated into the overall model to ascertain the optimal solutions for critical hyperparameters within the neural network. Actual measured data from a carbonate powder mill factory were subsequently employed to simulate particle size prediction. The experimentation indicates that the optimized model using the IVYA exhibits superior predictive performance compared to other single and combined models. Specifically, it achieves the following metrics: root mean square error of 0.824 4, mean absolute error of 0.423 0, mean relative percentage error of 1.295 4%, and coefficient of determination of 98.95%.

    参考文献
    相似文献
    引证文献
引用本文

黄何,邹帅,杨靖,黄福川.基于超参数优化的重质碳酸钙粉体粒度预测研究[J].电子测量技术,2025,48(4):51-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码