3D打印碳纤维复合材料构件缺陷识别方法研究
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学机电工程学院 北京 100192;2.高端装备智能感知与控制北京市国际科技合作基地 北京 100192; 3.北京信息科技大学现代测控技术教育部重点实验室 北京 100192 4. 南京航空航天大学机电工程学院 南京 210016

作者简介:

通讯作者:

中图分类号:

TN21

基金项目:

航空航天结构力学及控制国家重点实验室开放课题(MCMS-E-0423K01)项目资助


Research on defect identification method for 3D printed carbon fiber composite structural components
Author:
Affiliation:

1.School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University,Beijing 100192,China; 2.Beijing International Science cooperation Base of Highend Equipment Intelligent Perception and control,Beijing 100192,China; 3.Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University,Beijing 100192,China;4.School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    3D打印碳纤维增强复合材料构件常见缺陷包括裂纹、气泡、脱粘和分层等。然而,传统的红外热图处理技术存在边缘模糊、“伪影”等问题,并未充分利用像素值在时间维度上的信息。因此,提出了一种基于时序信息的自适应中值滤波算法。结合当前像素在时间维度上的变化信息,利用z-score离群值去除法,判断当前像素在一定时间维度内是否异常,从而减少噪声污染。实验证明:该算法与小波分解去噪、张量主成分分析等方法相比,信噪比指数平均高出6.155 dB,边缘保持良好。此外,使用半高宽测量法、最大类间差法和高斯拉普拉斯算子量化了缺陷,实验表明碳纤维含量和激励时间影响缺陷量化的精度。

    Abstract:

    Common defects in 3D printed carbon fiber reinforced composite components include cracks, bubbles, delamination, and layering issues. However, traditional infrared thermography processing techniques face problems such as edge blurring and artifacts, and they do not fully utilize the temporal information of pixel values. Therefore, this paper proposes an adaptive median filtering algorithm based on temporal information. By combining changes in the current pixel over time and using the z-score outlier removal method, the algorithm assesses whether the current pixel is anomalous within a specific time frame, thereby reducing noise interference. Experimental results demonstrate that this algorithm achieves an average signal-to-noise ratio that is 6-155 dB higher than methods such as wavelet denoising and tensor principal component analysis, while maintaining good edge definition. Additionally, defects were quantified using the half-width measurement method, maximum inter-class variance method, and Gaussian Laplacian operator. The experiments indicate that the content of carbon fiber and the excitation time significantly affect the accuracy of defect quantification.

    参考文献
    相似文献
    引证文献
引用本文

张嘉宁,韩凤霞,王红军,刘淑聪,汪俊.3D打印碳纤维复合材料构件缺陷识别方法研究[J].电子测量技术,2025,48(5):137-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-17
  • 出版日期:
文章二维码