基于选通图像的超分辨率重建算法研究
作者:
作者单位:

北方工业大学信息学院 北京 100144

中图分类号:

TP391;TN911.73


Research on super-resolution reconstruction algorithm based on gated image
Author:
Affiliation:

School of Information, North China University of Technology,Beijing 100144, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    激光距离选通技术能突破传统成像在雨雪雾、低光照和逆强光等复杂环境中无法成像的限制,但生成的选通图像是低质量灰度图,需要超分辨率重建技术着重于边缘信息和空间细节的重建,以提升视觉效果。由于选通图像缺乏颜色和丰富纹理信息,传统的特征提取方法容易产生冗余特征,影响重建效率。针对上述问题,本文提出了一种双聚合深层特征提取网络。首先,通过空间和通道重建卷积(SCConv)进行浅层特征提取,提高信息含量并解决冗余问题;其次,设计了一种新的深层特征提取模块,增强对选通图像边缘和细节的捕捉;最后,采用连续的最近邻插值加卷积操作进行图像重建,有效避免伪影问题。在选通图像数据集上的实验表明,相比基线的DAT算法,本文所提方法PNSR指标在2、3和4倍分辨率退化情况下分别提升了0.19 dB、0.12 dB和0.04 dB,SSIM在2、3和4倍分辨率退化情况下分别提升了0.000 5、0.000 8和0.001 0,结果表明本文方法可以取得较好的视觉效果。

    Abstract:

    Laser range gating technology can break through the limitations of traditional imaging in complex environments such as rain, snow and fog, low light and inverse glare, but the generated gated image is a lowquality grayscale map, which lacks color information and is difficult to distinguish between the subject and the background, so super-resolution reconstruction technology is needed to focus on the reconstruction of edge information and spatial details to improve the visual effect. Due to the lack of color and rich texture information in the gated image, the traditional feature extraction method is prone to redundant features, which affects the reconstruction efficiency. In order to solve the above problems, this paper proposes a bi-aggregation deep feature extraction network. Firstly, shallow feature extraction was carried out by spatial and channel reconstruction convolution (SCConv) to improve the information content and solve the redundancy problem. Secondly, a new deep feature extraction module was designed to enhance the capture of the edges and details of the gated image. Finally, continuous nearest neighbor interpolation and convolution operations are used for image reconstruction, which effectively avoids the problem of artifacts. Experiments on the gated image dataset show that compared with the baseline DAT algorithm, the PNSR index of the proposed method is increased by 0.19 dB, 0.12 dB and 0.04 dB under the condition of 2 fold, 3 fold and 4 fold resolution degradation, respectively, and the SSIM is increased by 0.000 5, 0.000 8 and 0.001 0, respectively, and the results show that the proposed method can achieve better visual effects.

    参考文献
    相似文献
    引证文献
引用本文

张正,郑颖俏,田青.基于选通图像的超分辨率重建算法研究[J].电子测量技术,2025,48(9):189-197

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-05-23
文章二维码