基于增强型PredRNN的雷达回波外推方法
DOI:
CSTR:
作者:
作者单位:

1.中科技术物理苏州研究院 苏州 215000;2.云遥动力科技(苏州)有限公司 苏州 215000

作者简介:

通讯作者:

中图分类号:

TN95;TN959.4

基金项目:

苏州市科技项目(SYG202135)、苏州市社会发展项目(2023ss17)资助


Radar echo extrapolation method based on enhanced PredRNN
Author:
Affiliation:

1.Suzhou Institute of Science and Technology Physics,Suzhou 215000, China;2.Yunyao Power Technology (Suzhou) Co., Ltd., Suzhou 215000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对样本失衡和预报准确率低的问题,提出一种增强预测循环神经网络EN_PredRNN。首先,对雷达数据进行预处理并筛选样本以构建高质量的雷达回波数据集;然后,通过深度融合时空长短时记忆单元与动态卷积,设计动态卷积时空长短时记忆模块DC_STLSTM,实时调整卷积参数以精准捕捉雷达回波的瞬时变化特征。然后,通过堆叠5 层DC_STLSTM,提取雷达回波的更深层次特征,并使用梯度高速公路缓解梯度消失,提高预报精度。实验结果表明,相比于比PredRNN,EN_PredRNN在25、35、45、65 dBZ阈值下的临界成功指数分别提升了19.3%、17.3%、16.5%、14.0%,虚警率分别下降了28.3%,27.5%,26.7%、24.9%,有效学习了雷达数据的时空变化特征,准确预测雷达回波强度和位置。

    Abstract:

    In response to the problems of imbalanced samples and low prediction accuracy, an enhanced predictive recurrent neural network EN_PredRNN is proposed. Firstly, the radar data is preprocessed and samples are selected to construct a highquality radar echo dataset; then, deep fusion of spatiotemporal long short-term memory units and dynamic convolution is used to design a dynamic convolution combined with spatio temporal long short term memory module DC_STLSTM, which adjusts convolution parameters in real-time to accurately capture the instantaneous changes in radar echoes. Then, stack 5 layers of DC_STLSTM to extract deeper features of radar echoes, and use gradient highways to alleviate gradient vanishing, improving the model′s generalization ability and prediction accuracy. The experimental results showed that EN_PredRNN performed the best, significantly improving the critical success index and reducing false alarm rates. Compared with PredRNN, it increased the critical success index by 19.3%, 17.3%, 16.5% and 14.0% at 25, 35, 45 and 65 dBZ, respectively, while reducing false alarm rates by 28.3%, 27.5%, 26.7% and 24.9%, effectively. This model effectively learned the spatiotemporal variation characteristics of radar data and accurately predicted the radar echo intensity and location.

    参考文献
    相似文献
    引证文献
引用本文

谢梦,刘丽丽,杨春蕾,王艳,顾明剑.基于增强型PredRNN的雷达回波外推方法[J].电子测量技术,2025,48(7):171-178

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码