基于改进YOLO算法地铁异物检测
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学机电学院 北京 100192;2.北京信息科技大学现代测控技术教育部重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TN29

基金项目:

国家重点研发计划课题(2020YFB1713205)项目资助


Subway foreign body detection based on improved YOLO algorithm
Author:
Affiliation:

1.Faculty of Mechanical and Electrical Engineering, Beijing Information Science Technology University,Beijing 100192,China; 2.Key Laboratory of Modern Measurement and Control Technology of the Ministry of Education, Beijing Information Science Technology University,Beijing 100192,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于地铁站台和列车间缝隙之间异物入侵造成的安全防护,以及现有深度学习算法低光照下检测精度低,空间位置精度和小目标检测准确性不足等问题,提出一种改进YOLOv10地铁缝隙异物检测的深度学习方法SSS-YOLO,用于地铁缝隙中异物的监测,该方法首先通过SCINet构建了一个权重共享的光照学习过程,用于改善地铁缝隙暗环境下的图像质量问题,考虑到不同尺度部分特征权重,SSS-YOLO模型中引入了无参注意力机制,同时强化了空间位置信息,减小了信息损失量,最后使用Shape-IOU损失函数,增强了地铁缝隙中小目标检测和回归预测框的准确性,提升了对缝隙中小目标的检测精度。实验结果表明,该方法准确率达到了90.90%,平均检测精度提高了3.62%。

    Abstract:

    In order to solve the problems of low detection accuracy under low light, insufficient spatial position accuracy and small target detection accuracy of existing deep learning algorithms, a deep learning method SSS-YOLO to improve the detection of foreign objects in subway cracks was proposed to improve YOLOv10 for the detection of foreign objects in subway cracks. In order to improve the image quality in the dark environment of subway gaps, considering the weights of some features at different scales, the parameter-free attention mechanism is introduced into the SSS-YOLO model, and the spatial position information is strengthened to reduce the amount of information loss, and finally the Shape-IOU loss function is used to enhance the accuracy of small target detection and regression prediction frame, and improve the detection accuracy of small and small targets in the gap. The experimental results show that the accuracy of the method reaches 90.90%, and the average detection accuracy is increased by 3.62%.

    参考文献
    相似文献
    引证文献
引用本文

何赛赛,黄民,王文胜.基于改进YOLO算法地铁异物检测[J].电子测量技术,2025,48(16):70-77

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告