面向遥感图像的轻量化小目标检测算法研究
DOI:
CSTR:
作者:
作者单位:

沈阳航空航天大学电子信息工程学院 沈阳 110136

作者简介:

通讯作者:

中图分类号:

TN919.8

基金项目:

国家自然科学基金(61671310)、辽宁省兴辽英才计划项目基金(XLYC1907134)项目资助


Research on lightweight small target detection algorithm for remote sensing images
Author:
Affiliation:

School of Electronic Information Engineering, Shenyang University of Aeronautics and Astronautics,Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像中存在因背景复杂、尺度变化大、小目标密集而导致的目标检测准确率低等问题,提出了一种改进YOLOv8n的检测算法:MGL-YOLO。首先,设计MSConv减少模型参数,基于MSConv重构C2f模块,提高多尺度特征提取能力;其次,基于GLSA和GSConv模块改进BiFPN结构,简化颈部网络,增强网络的特征处理能;在头部设计Light-head进一步轻量化模型,加强小目标特征提取能力;最后引入NWD损失函数替换原损失函数,增强对小目标的定位精度。在DIOR-R、DOTAv1.0和VEDAI数据集上验证,实验结果表明MGL-YOLO模型在DIOR-R数据集上准确率和mAP@0.5比基准模型提高了1.7%和1.3%,在DOTAv1.0数据集上提高了1.0%和1.1%,在VEDAI数据集上提高了2.4%和2.1%。参数量降低47%,计算量降低32%,与其他小目标检测算法相比也得到了较好的检测性能。

    Abstract:

    Aiming at the problem of low accuracy in object detection caused by complex background, large scale changes, and dense small targets in remote sensing images, an improved YOLOv8n detection algorithm, MGL-YOLO, is proposed. Firstly, design MSConv to reduce model parameters and reconstruct C2f module based on MSConv to improve multi-scale feature extraction capability; secondly, based on GLSA and GSConv modules, the BiFPN structure is improved to simplify the neck network and enhance its feature processing capability. Design a Light head model at the head to further reduce weight and enhance the ability to extract small target features; finally, the NWD loss function is introduced to replace the original loss function and enhance the localization accuracy for small targets. Verified on the DIORR, DOTAv1.0, and VEDAI datasets, the experimental results show that the MGL-YOLO model has high accuracy on the DIOR-R dataset mAP@0.5 Improved by 1.7% and 1.3% compared to the benchmark model, 1.0% and 1.1% on the DOTAv1.0 dataset, and 2.4% and 2.1% on the VEDAI dataset. The parameter count has been reduced by 47%, and the computational complexity has been reduced by 32%. Compared with other small object detection algorithms, it has also achieved good detection performance.

    参考文献
    相似文献
    引证文献
引用本文

葛雯,邵钰琦,屈乐乐.面向遥感图像的轻量化小目标检测算法研究[J].电子测量技术,2025,48(4):118-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码