改进YOLOv8的密集人群口罩检测算法
作者:
作者单位:

桂林电子科技大学电子工程与自动化学院 桂林 541004

中图分类号:

TP391;TN919.8

基金项目:

国家自然科学基金(62263005)、广西自然科学基金(2020GXNSFDA238029)、广西高校人工智能与信息处理重点实验室开放基金重点项目(2022GXZDSY004)、桂林电子科技大学研究生教育创新计划项目(2024YCXS119,2024YCXS131)资助


Improved YOLOv8 for mask detection in dense crowds
Author:
Affiliation:

College of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对公共场合密集人群场景下由于人群遮挡导致的信息缺失及检测目标较小、分辨率低导致人脸佩戴口罩检测算法检测困难的问题,提出了一种改进YOLOv8的密集人群口罩检测算法。采用 GD机制代替YOLOv8中FPN结构解决跨层信息传输中信息丢失的问题,GD使用一个统一的模块收集和融合所有层级的信息,实现网络跨层信息的无损传输,增强了网络特征提取能力。在GD机制中插入ODconv模块对GD传输的信息沿4个维度进行学习,提高模型低分辨目标和小目标的检测精度。此外,引入了一种轻量化检测头SCSBD,对占比过高的YOLOv8检测头进行轻量化处理,平衡模型大小。实验结果表明,改进后的网络在精确率、召回率和平均精度上分别提升了13.6%、1.5%和6.9%,对人脸口罩的检测精度达到了81.1%,模型权重文件仅为25 MB,模型大小介于YOLOv8s和Gold-YOLO-S之间,达到了大小和精度的平衡。

    Abstract:

    To address the challenges in mask detection for faces in dense crowd scenarios, particularly due to information loss from crowd occlusion, small detection targets, and low resolution, improved YOLOv8 algorithm for dense crowd mask detection is proposed. This approach replaces the FPN structure in YOLOv8 with a GD mechanism to solve the issue of missing cross-layer information transmission. The GD mechanism uses a unified module to collect and integrate information from all layers, enabling lossless cross-layer information transmission and enhancing the network′s feature extraction capabilities. The ODconv module is inserted into the GD mechanism to learn the information transmitted by GD along four dimensions, improving the model′s detection accuracy for low-resolution images and small targets. Additionally, a SCSBD is introduced to lighten the YOLOv8 detection head, which occupies a significant proportion, thereby balancing the model size. Experimental results show that the improved network has increased precision, recall, and mean average precision by 13.6%、1.5% and 6.9%, respectively, with an 81.1% accuracy in mask detection on faces. The model′s weight file is only 25 MB, and its size is between YOLOv8s and Gold-YOLO-S, achieving a balance between size and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

伍锡如,梁诗意.改进YOLOv8的密集人群口罩检测算法[J].电子测量技术,2025,48(1):55-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-24
文章二维码