一种融合几何和深度学习的甘蔗高度测量方法
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学自动化学院 北京 100192;2.中国科学院自动化研究所 北京 100190

作者简介:

通讯作者:

中图分类号:

TP391.4; TN41

基金项目:

广西省科技计划重点研发项目(AB24010164,2024AB08020)、国家自然科学基金京津冀基础研究合作专项(F2024205028)资助


Research on sugarcane automated characterization measurement robot based on image segmentation and detection
Author:
Affiliation:

1.College of Automation, Beijing Information Science and Technology University,Beijing 100192, China;2.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    甘蔗是一种具有全球经济意义的重要经济作物,其株高与产量的关系非常密切,而确定甘蔗的高度表征的传统方法依赖于人工检测,这是劳动密集型与耗时的。因此,本文收集了甘蔗作物在不同场景下的图像数据集,提出了轻量化改进的PSPNet和YOLOv5s模型,用于分割甘蔗主体与检测甘蔗顶梢位置。并且开发了一套自动测量机器人,其部署了改进后的模型来实时推理深度摄像头采集的图像,进而,设计云台自动化操作系统。最后,获取甘蔗位置与深度信息来计算甘蔗高度。实验结果表明,甘蔗高度测量方法的平均绝对误差小于2.4 cm、准确率高于97.61%、成功率高于93%、检测时间低于13.2 s,并且提出的甘蔗主干分割与顶梢检测模型参数大幅减小,精度分别保持在87%与97%左右。

    Abstract:

    Sugarcane is a significant and globally important economic crop, with a close correlation between plant height and yield. Traditional methods for determining sugarcane height characterization rely on labor-intensive and time-consuming manual detection. Therefore, this study collected image datasets of sugarcane crops in various scenarios and proposed lightweight enhanced PSPNet and YOLOv5s models for segmenting sugarcane bodies and detecting the tip positions. Additionally, an automated measurement robot was developed, deploying the improved models for real-time inference on images captured by a depth camera and implementing a gimbal automation system. Finally, sugarcane positions and depth information were utilized to calculate sugarcane height.The experimental results show that the average absolute error of the sugarcane height measurement method is less than 2.4 cm, the accuracy is higher than 97.61%, the success rate is higher than 93%, and the detection time is less than 13.2 s. In addition, the proposed sugarcane trunk segmentation and top detection model parameters are significantly reduced, with accuracies maintained at around 87% and 97%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

蒋正中,杨鸿波,杨明浩,刘安琪.一种融合几何和深度学习的甘蔗高度测量方法[J].电子测量技术,2025,48(11):12-23

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码