基于霍夫梯度的同步并行圆检测方法
DOI:
CSTR:
作者:
作者单位:

1.青岛大学自动化学院 青岛 266000;2.青岛大学未来研究院 青岛 266000

作者简介:

通讯作者:

中图分类号:

TP391.41;TN06

基金项目:

山东省自然科学基金(ZR2021QF038)项目资助


Synchronous parallel circle detection method based on Hough gradient
Author:
Affiliation:

1.Department of Automation, Qingdao University,Qingdao 266000, China;2.Institute for Future, Qingdao University, Qingdao 266000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人视觉伺服控制主要依靠其视觉系统对工件角点、边线和圆等的检测为其后续决策与控制提供依据。随着系统作业密度的骤增,边缘模组已很难满足其检测负荷,尤其面对复杂场景的连续批量检测,终端视觉的实时性和准确性均受到巨大挑战,降低了系统作业效率。针对上述瓶颈,尤其是难度更高的圆检测,创新性的提出了一种基于霍夫梯度的同步圆检测方法:通过对边缘图像进行边缘筛选去除图像中的干扰信息;然后通过八点法同步确定圆心和半径,并通过半径再搜索减少半径误差,通过圆心位置约束减少无效计算;最后通过候选圆再搜索和最优圆获取实现图像中圆目标的准确检测。为进一步提高圆检测速度和效率,上述算法与CUDA并行技术进一步融合,提出了一种基于霍夫梯度的同步并行圆检测方法,能够充分利用并行计算的优势加速圆检测过程。实验结果表明,与GHT、CACD、RCD和Zhao等相比,该方法显著提升了圆检测的精度和效率,具备更强的抗噪声和抗扰动能力。其精确率、召回率、F 值分别为99.1%、90.7%和94.7%;单张图像的平均检测时间为0.09 s,检测效率最高提升26倍,使其在工业领域的批量图像处理任务中具有较好的实用价值。

    Abstract:

    Visual servo control robots mainly rely on their vision systems to detect corner points, edges, and circles of workpieces, providing the basis for subsequent decision-making and control. With the rapid increase of its workload density, the edge modules struggle to meet these detection loads, especially for continuous batch detection in complex scenarios, where the real-time and accuracy of visual system are greatly challenged, reducing the system efficiency. To deal with the above bottlenecks in circle detection, particularly the more challenging circle detection, we proposed a novel synchronous circle detection method based on Hough gradient: the interference information in the image is removed by edge screening of the edge image; the center and radius are synchronously determined by the eight-point method; the radius error is reduced by radius re-search, and invalid calculations are reduced by center position constraints; the accurate detection of circular targets in the image is achieved by candidate circle re-search and optimal circle acquisition. To further enhance the speed and efficiency of circle detection, the above method is integrated with CUDA parallel technology for a synchronous parallel circle detection method based on Hough gradient, which fully utilizes its parallel computing to accelerate the circle detection. In comparison with GHT, CACD, RCD, and Zhao, the proposed method significantly improves the circle detection accuracy and efficiency with stronger anti-noise and anti-disturbance capabilities, where its precision, recall rate and F value are 99.1%, 90.7% and 94.7% respectively; the average detection time is 0.09 s per image with an efficiency increase by up to 26 times, making it suitable for batch image processing in industry.

    参考文献
    相似文献
    引证文献
引用本文

苗少杰,李宪,赵东杰,孙宇.基于霍夫梯度的同步并行圆检测方法[J].电子测量技术,2025,48(5):156-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-17
  • 出版日期:
文章二维码