基于改进YOLOv7-tiny的自爆绝缘子检测算法
DOI:
CSTR:
作者:
作者单位:

井冈山大学机电工程学院 吉安 343009

作者简介:

通讯作者:

中图分类号:

TM216; TN98

基金项目:

国家自然科学基金(42061055) 、江西省井冈山农高区科技专项(20222-051252) 江西省教育厅科学技术研究项目(GJJ2401514) 井冈山大学博士科研启动项目(JZB2338)资助


Detection algorithm for self-exploding insulator based on improved YOLOv7-tiny
Author:
Affiliation:

School of Mechanical and Electrical Engineering, Jinggangshan University,Ji′an 343009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在巡检过程中及时检测出自爆绝缘子能够有效预防电网事故的发生,针对卷积神经网络训练所需内存较大和检测速度慢,在移动设备上进行实时检测没有优势的问题,提出了改进的YOLOv7-tiny绝缘子自爆故障检测算法。首先,在YOLOv7-tiny算法中引入动态蛇形卷积并设计更为高效的动态蛇形层聚网络增加感受野;随后引入Gold-YOLO网络增强中间层的信息融合;而后使用MPDIoU损失函数减少预测边界的冗余;最后设计一套自爆绝缘子检测系统,以便巡检人员在海量图片中快速查找出自爆绝缘子。研究结果表明:改进后算法的均值平均精度为96.3%,比YOLOv7-tiny算法提高了1.1%。改进后算法对自爆绝缘子的平均精度达到99.5%,比YOLOv7-tiny算法提高了0.2%并比YOLOv7算法高出0.1%,而且改进后算法的规模仅为YOLOv7算法的28%且帧率提升了11.3,达到了60.6。改进后的算法在保证识别精度的同时能满足实时检测的需求。

    Abstract:

    Timely detection of Self-exploding insulators during the inspection process can effectively prevent power grid accidents. In response to the problems of large memory and slow detection speed required for convolutional neural network training, which do not have advantages in real-time detection on mobile devices, self-explosion fault detection algorithm for Insulator based on improved YOLOv7-tiny is proposed. Firstly, deformable convolution and dynamic snake convolution is introduced into the YOLOv7 tinyIncorporating dynamic serpentine convolution into the YOLOv7-tiny algorithm and designing a more efficient layer network to enhance perception; then, the Gold-YOLO network is introduced to enhance the information fusion of the intermediate layer; subsequently, the MPDIoU loss function is used to reduce the redundancy of the prediction boundary; finally, designing a Self-exploding insulator detection system to enable staff to quickly identify self-exploding insulators in a massive collection of images. The research results show that the mean average precision of the improved algorithm is 96.3%, which is 1.1% higher than the original YOLOv7-tiny algorithm. The average precision of the improved algorithm is 99.5% for identifying Self-exploding insulators, which is 0.2% higher than the YOLOv7-tiny algorithm and 0.1% higher than the YOLOv7 algorithm. Moreover, the scale of the improved algorithm is only 28% of that of the YOLOv7 algorithm, and the FPS has increased by 11.3, reaching 60.6. The improved algorithm can meet the requirements of real-time detection while ensuring recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

陈佳韵,肖根福,张祥明.基于改进YOLOv7-tiny的自爆绝缘子检测算法[J].电子测量技术,2025,48(7):66-74

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码