锂电池X射线图像增强算法研究
DOI:
CSTR:
作者:
作者单位:

1.福建理工大学电子电气与物理学院 福州 350118;2.福建理工大学应用物理研究所 福州 350118

作者简介:

通讯作者:

中图分类号:

TN29

基金项目:

国家自然科学基金(12005039)、福建省自然科学基金(2018J01586)项目资助


Research on lithium battery X-ray image enhancement algorithm
Author:
Affiliation:

1.School of Electronic, Electrical Engineering and Physics, Fujian University of Technology,Fuzhou 350118, China;2.Institute of Applied Physics, Fujian University of Technology,Fuzhou 350118, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池作为当前新能源市场的重要组成部分,广泛应用于消费电子、电动汽车和储能领域。为确保锂电池的安全性,在出厂前通常利用X射线对其内部进行检测,从而剔除有缺陷的产品。然而,利用X射线成像的锂电池原始图片通常对比度低、对比度不均匀、灰度值集中在狭窄区域,导致无法判别样品的细节信息。针对锂电池X射线图片的以上特点,本文提出了两种方法增强锂电池X射线图片的对比度。第1种方法是利用自定义非线性灰度变换函数结合CLAHE算法来增强对比度,第2种方法是利用同态滤波结合CLAHE变换实现对比度的增强。本文编写程序实现了该想法,并在圆柱形卷绕锂电池图片上进行了测试。结果显示,本文提出的对比度增强算法使图片的信息熵提高约20%,灰度直方图显示更加均匀,有着更高的对比度,显著提高了锂电池X射线图像质量。这项研究将为微焦点X射线锂电池缺陷检测和自动识别提供技术支持。

    Abstract:

    Lithium batteries, as an important component of the current new energy market, are widely used in consumer electronics, electric vehicles, and energy storage fields. To ensure the safety of lithium batteries, they are usually inspected internally using X-rays before leaving the factory to eliminate defective products. However, the original images of lithium batteries using X-ray imaging often have low contrast, uneven contrast, and concentrated grayscale values in narrow areas, making it difficult to distinguish the detailed information of the sample. This article proposes two methods to enhance the contrast of lithium battery X-ray images based on the above characteristics. The first method is to use a custom designed nonlinear grayscale transformation function combined with the CLAHE algorithm to enhance contrast, the second method is to use homomorphic filtering combined with CLAHE transform to enhance contrast. This article developed a program to implement the idea and tested on cylindrical wound lithium battery images. The results showed that the contrast enhancement algorithm proposed in this article increased the information entropy of the image by about 20%, made the grayscale histogram display more uniform, has higher contrast ratio, and then the quality of lithium battery X-ray images improved significantly. This study will provide technical support for the micro focus X-ray defect detection and automatic recognition of lithium batteries.

    参考文献
    相似文献
    引证文献
引用本文

曾德榕,谭淦,钟敏良,高巍巍,蓝杰钦.锂电池X射线图像增强算法研究[J].电子测量技术,2025,48(5):166-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-17
  • 出版日期:
文章二维码