曲线匹配矫正扩散网络的LDCT图像去噪)
DOI:
CSTR:
作者:
作者单位:

苏州大学 光电科学与工程学院

作者简介:

通讯作者:

中图分类号:

TN95

基金项目:


Curve Matching Diffusion Model for LDCT images denoising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    低剂量CT检查的使用极大减少了CT检查的辐射剂量,但却导致了CT图像中噪声增加和伪影增多等一系列问题,从而降低了图像质量和准确性,影响医生在诊断过程中的判断。而近年来生成式模型在解决这一问题上表现出了其优秀的性能,然而生成模型在生成过程中仍存在着容易生成混淆和结构性不足的问题,为了解决这一问题,构建了一个条件扩散去噪网络模型,并在此基础上引入了可训练的曲线矫正模块来对不同噪声等级进行矫正处理,并入了联合损失函数。实验结果表明,所提出算法相较于对比算法取得了较优去噪结果,在数据集测试中得到了35.70和0.9128,在所选取方法中获得最优效果,同时在不同剂量的低剂量CT图像中取得了较好的泛化性,可以保持较优秀的降噪水平。

    Abstract:

    The use of Low-Dose CT (LDCT) examinations has significantly reduced the radiation dose of CT scans, but it has also led to increased noise and artifacts in CT images, thereby reducing image quality and accuracy, which affects doctors" diagnostic judgments. In recent years, generative models have demonstrated excellent performance in addressing this issue. However, generative models still face challenges such as generating confusing images and lacking interpretability during the generation process. To address this issue, a conditional diffusion denoising network model was constructed. On this basis, a trainable curve correction module was introduced to correct images with different noise levels, and a joint loss function was incorporated. Experimental results show that the proposed algorithm achieves better denoising results compared to baseline algorithms. Additionally, it demonstrates good generalization across LDCT images with different doses, maintaining excellent denoising performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-13
  • 最后修改日期:2024-12-12
  • 录用日期:2024-12-24
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知