基于AgriSwin的植物病虫害检测算法
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学信息科学与工程学院 沈阳 110159

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:


Plant disease and pest detection algorithm based on AgriSwin
Author:
Affiliation:

College of Information Science and Engineering, Shenyang Ligong University,Shenyang 110159, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现代农业中植物病虫害检测所面临的多尺度特征和复杂背景处理难题,本文提出了一种高效且精准的检测模型AgriSwin,以提升农业病虫害检测的精度和效率。AgriSwin模型在Swin Transformer的基础上,融合了扩张特征聚合模块与自适应空间卷积模块。扩张特征聚合模块通过不同扩张率的卷积层实现多尺度特征提取,并利用全局特征信息的自适应加权机制优化了特征融合效果。自适应空间卷积模块则通过生成自适应权重,对特征图进行动态加权,从而在复杂背景下增强局部和全局信息的捕捉能力。实验结果表明,AgriSwin模型在PlantDoc、PlantVillage和自建数据集上的检测精确率分别达到79.65%、99.90%和95.08%。此外,该模型的参数量比Swin Transformer-T减少了25.63%,在保持高精确率的同时显著降低了内存和计算资源的占用,展示了在大规模农业应用中的广泛潜力。

    Abstract:

    To address the challenges of multiscale features and complex background processing in plant pest and disease detection in modern agriculture, this paper proposes an efficient and accurate detection model, AgriSwin, to improve the precision and efficiency of agricultural pest and disease detection. The AgriSwin model is based on the Swin Transformer and integrates a dilated feature aggregation module and an adaptive spatial convolution module. The dilated feature aggregation module extracts multi-scale features through convolutional layers with different dilation rates and optimizes feature fusion using an adaptive weighting mechanism for global feature information. The adaptive spatial convolution module generates adaptive weights to dynamically weight the feature maps, enhancing the ability to capture both local and global information in complex backgrounds. Experimental results show that the AgriSwin model achieves detection accuracies of 79.65%、99.90%、and 95.08% on the PlantDoc, PlantVillage, and custom datasets, respectively. Additionally, the model′s parameter count is reduced by 25.63% compared to Swin Transformer-T, significantly lowering memory and computational resource requirements while maintaining high accuracy, demonstrating its broad potential for large-scale agricultural applications.

    参考文献
    相似文献
    引证文献
引用本文

刘微,张傲.基于AgriSwin的植物病虫害检测算法[J].电子测量技术,2024,47(24):160-170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-24
  • 出版日期:
文章二维码