基于RAA-UNet的虹膜块状特征分割
DOI:
CSTR:
作者:
作者单位:

中国人民公安大学侦查学院 北京 100038

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.7

基金项目:

中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)项目资助


Block-shaped iris feature segmentation based on RAA-UNet
Author:
Affiliation:

School of Criminal Investigation, People′s Public Security University of China,Beijing 100038, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前虹膜识别结果尚不能应用到司法审判当中,法庭科学领域开始关注以虹膜可解释特征统计规律为基础的量化鉴定方法,为此需要实现虹膜纹理特征的自动分割提取。针对近红外虹膜图像中块状特征的提取问题,提出一种结合残差网络、注意力机制和空洞空间金字塔池化的虹膜块状特征分割网络。为此,首先构建了虹膜块状特征标注数据集,用于模型的训练、验证和测试。其次,以UNet为基础框架进行改进,将UNet的卷积模块替换为残差模块,促进梯度的传播并提高特征的保留和传递能力;在跳跃连接中加入注意力门模块以提高模型对块状特征的感知能力;在模型中部和末端采用空洞空间金字塔池化模块,扩大感受野并进行多尺度特征提取和融合。最后,提出了结合交叉熵和Dice系数的混合损失函数,并采用归一化和直方图均衡化等预处理技术以突出虹膜块状特征。实验结果表明,RAA-UNet在测试集上的表现优于其他对比模型,F1分数、mIoU和Dice系数分别达到了82.64%、84.21%、81.66%,较UNet提升4.42%、3.37%和3.87%。损失函数实验确定了最佳权重因子,直方图均衡化处理显著提升了分割效果,消融实验验证了模型改进的有效性。提出的RAA-UNet语义分割模型能够实现虹膜块状特征的准确分割,可为虹膜鉴定的研究提供技术支撑。

    Abstract:

    Currently, the results of iris recognition cannot be applied to judicial trials. The forensic science community has begun to focus on quantitative identification method based on the statistical rules of interpretable iris features. For this purpose, it is necessary to achieve automatic segmentation and extraction of iris texture features. A segmentation network for block-shaped iris features in near-infrared iris images is proposed, which combines residual networks, attention mechanisms, and atrous spatial pyramid pooling. First, a block-shaped iris feature annotation dataset was constructed for model training, validation, and testing. Secondly, improvements were made to the UNet framework as follows: the convolutional modules were replaced with residual modules to promote gradient propagation and enhance feature retention and transmission capabilities; attention gate modules were added to the skip connections to improve the model′s perception of block-shaped features; and atrous spatial pyramid pooling modules were employed in the middle and end parts of the model to expand the receptive field and perform multi-scale feature extraction and fusion. Finally, a hybrid loss function combining cross-entropy and Dice coefficient was proposed, and preprocessing techniques such as normalization and histogram equalization were used to highlight block-shaped iris features. Experimental results show that the RAA-UNet outperforms other comparison models on the test set, with F1 score, mIoU, and Dice coefficient reaching 82.64%, 84.21%, and 81.66%, respectively, representing improvements of 4.42%, 3.37%, and 3.87% over UNet. The loss function experiments determined the optimal weight factor, and histogram equalization significantly improved segmentation performance. Ablation experiments verified the effectiveness of the model improvements. The proposed RAA-UNet semantic segmentation model can accurately segment block-shaped iris features, providing technical support for iris identification research.

    参考文献
    相似文献
    引证文献
引用本文

陈宇,唐云祁.基于RAA-UNet的虹膜块状特征分割[J].电子测量技术,2025,48(7):179-191

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码