改进YOLOv8的轻量化烟叶计数检测算法
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650504;2.云南省烟草农业科学研究院 昆明 650021

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

中国烟草总公司云南省公司科技计划项目(2021530000241025,2022530000241030)、云南大学研究生科研创新基金(KC-23235266)项目资助


Improved YOLOv8 lightweight tobacco leaf count detection algorithm
Author:
Affiliation:

1.School of Information Science and Technology, Yunnan University,Kunming 650504,China; 2.Yunnan Academy of Tobacco Agriculture Science,Kunming 650021,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    烟叶产量的预估是一项非常重要的任务,叶片数量与产量直接相关。传统人工统计效率低、成本高,为解决这些问题,研究提出一种轻量化YOLOv8-SLSS烟叶计数检测算法,该算法针对YOLOv8n检测精度不足、计算复杂度高以及烟叶遮挡场景导致的漏检问题进行改进。算法采用改进后的ShuffleNetV2light网络结构替代原模型的骨干网络,缩减模型参数和计算负荷;引入设计的LHCB模块到颈部网络的C2f 中,扩大模型的感受视野,提高模型检测精度的同时减少计算量;引入SEAMDetect检测头模块,增强了烟叶遮挡场景下的检测能力;最后,引入SPPELAN模块,增强模型多尺度特征提取能力和计算效率。实验结果表明,改进后的模型参数量和浮点运算量分别减少了63.3%和61.7%,算法的检测平均精度AP@0.5由原算法的92%提高到93.1%,实时检测速度达到83 fps,相比原YOLOv8n模型提高5.1%。改进后的算法提高了传统YOLO模型在烟叶遮挡场景下的检测能力,实现了较高精度、轻量化、实时检测性能的平衡,为烟草农业数字化提供有效地技术支持。

    Abstract:

    The estimation of tobacco leaf yield is a crucial task, as the number of leaves directly impacts the yield. Traditional manual statistics are inefficient and costly, in order to solve these problems, this research proposes a lightweight YOLOv8-SLSS tobacco leaf counting detection algorithm, which improves on the YOLOv8n methods for the lack of detection accuracy, high computational complexity, and missed detections caused by overlapping tobacco leaves. The algorithm replaces the original model′s backbone network with an enhanced ShuffleNetV2light architecture, reducing model parameters and computational load. Integrate the LHCB module into the neck network′s C2f module to expand the model′s receptive field, enhances detection capabilities and reduces computational load. The introduction of the SEAMDetect module has enhanced the detection capabilities in scenarios involving occlusion by tobacco leaves. Finally, the SPPELAN module is introduced to enhance the model multi-scale feature extraction capability and computational efficiency. Experimental results demonstrate that the modified model significantly reduces model parameters and floating-point operations by 63.3% and 61.7% respectively. The algorithm′s average precision improves from 91.8% to 93.1%, achieving a real-time detection speed of 83 fps, marking a 51% enhancement over the original algorithm, meeting real-time detection demands. The improved algorithm enhances the detection ability of the traditional YOLO model in tobacco leaf occlusion scenarios, realizes the balance of high accuracy, lightweight design, and real-time detection performance, thus providing effective technical support for the digitization of tobacco agriculture.

    参考文献
    相似文献
    引证文献
引用本文

肖恒树,李军营,梁虹,马二登,张宏.改进YOLOv8的轻量化烟叶计数检测算法[J].电子测量技术,2025,48(8):177-186

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码