基于多尺度特征融合与交互的路侧目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学计算机学院 南京 210044; 2.同济大学嵌入式系统与服务计算教育部重点实验室 上海 201804; 3.无锡学院物联网工程学院 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP391;TN791

基金项目:

国家自然科学基金青年项目(42305158)资助


Roadside object detection algorithm with multi-scale feature fusion and interaction
Author:
Affiliation:

1.School of Computer Science and Technology, Nanjing University of Information Science and Technology,Nanjing 210044,China; 2.Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji University, Shanghai 201804, China; 3.School of Internet of Things Engineering, Wuxi University,Wuxi 214105,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对路侧视角下目标检测任务中,小目标密集, 多尺度变化以及复杂天气背景干扰等挑战,提出基于多尺度特征融合与交互的目标检测算法——MF-YOLO。设计C2f-CAST,通过星操作将来自不同子空间的特征进行交互与变换,并引入MLCA捕捉远距离像素之间局部,全局特征以及通道和空间特征,多尺度信息聚合加强对遮挡目标显著语义信息关注,消除背景影响;针对颈部层在上下文信息融合效率较低的问题,加入轻量级卷积GSConv对传统卷积进行优化,并设计跨级部分网络模块,降低模型复杂度和参数量。构造跨层级融合模块SDFM,对浅层特征图进行自校准操作,并融合深层特征图语义信息,解决小目标漏检的问题;最后,设计基于自适应惩罚因子和锚框质量的梯度调整函数,并结合动态聚集机制改进的WPIoU损失函数,提升边界框回归性能和检测鲁棒性。实验结果显示,MF-YOLO在DAIR-V2X-I和UA-DETRAC数据集上mAP@0.5指标分别达到85.1%,92.3%,与原YOLOv8s相比分别提升4.4%和1.8%,计算量GFLOPs下降了19.8%,参数量下降8.18%。检测速度达到152 fps,满足实时要求。

    Abstract:

    In view of the challenges of dense small targets, multi-scale variations, and complex weather background interference in roadside perspective target detection tasks, a multi-scale feature fusion and interaction-based target detection algorithm, MF-YOLO, is proposed. Design C2f-CAST, interact and transform features from different subspaces through star operations, and introduce MLCA to capture local, global, channel, and spatial features between distant pixels. Multi-scale information aggregation enhances attention to significant semantic information of occluded objects and eliminates background influence; to address the problem of low efficiency in context information fusion for the neck layer, we add lightweight convolution GSConv to optimize traditional convolution, and design a cross-level partial network module VoV-GSCSP to reduce model complexity and parameter count. Construct a cross-level fusion module SDFM to perform self-calibration on shallow feature maps and fuse semantic information from deep feature maps to solve the problem of missed detection of small targets; finally, the design is based on an adaptive penalty factor, a gradient adjustment function for anchor box quality combined with a dynamic clustering mechanism to improve the WPIoU loss function, enhancing the performance of bounding box regression and detection robustness. The experimental results show that MF-YOLO achieves mAP@0.5 of 85.1% and 92.3% on DAIR-V2X-I and UA-DETRAC datasets, respectively, which is 4.4% and 1.8% higher than the original YOLOv8s, with a reduction of 19.8% in computational complexity and 8.18% in parameter count. The detection speed reaches 152 fps, meeting the real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文

顾杨海,李富,陈德基,王泉.基于多尺度特征融合与交互的路侧目标检测算法[J].电子测量技术,2024,47(23):152-161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码