聚焦边缘与多尺度特征的轻量化违禁品检测算法
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院 焦作 454000;2.河南省煤矿装备智能检测与控制重点实验室 焦作 454000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

河南省高校基本科研业务费专项(NSFRF220444)、河南省科技攻关项目(232102210040)资助


Lightweight contraband detection focusing on edge and multi-scale features
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University,Jiaozuo 454000,China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo 454000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对X射线安检图像中背景复杂、尺度多变、小尺寸目标难以检测等挑战,提出一种聚焦边缘与多尺度特征的轻量化违禁品检测算法LEM-YOLO。首先,设计轻量化边缘特征增强模块(LEFE),增强模型的边缘特征提取能力。其次,设计高效多级特征融合金字塔网络,利用动态上采样(Dysample)和层次尺度特征金字塔网络(HS-FPN),增强多尺度特征融合并减少计算冗余,同时设计动态特征编码模块(DFE),保留小尺寸目标的全局信息。最后,使用Shape-IoU作为边界框回归损失函数,聚焦边框形状和自身尺度,提升目标定位精度。在公开数据集SIXray上进行实验,结果表明,LEM-YOLO在违禁品检测中的mAP达到了94.63%,比原算法提升了2.56%,同时模型体积下降了50.67%,更好地满足了违禁品检测场景的需求。

    Abstract:

    To tackle challenges such as complex backgrounds, scale variability, and difficulty in detecting small objects in X-ray security inspection images, a lightweight contraband detection algorithm named LEM-YOLO is proposed, focusing on edge and multi-scale features. Firstly, a lightweight edge feature enhancement (LEFE) module is designed to strengthen edge feature extraction. Secondly, an efficient multi-level feature fusion pyramid network is developed, incorporating dynamic upsampling (Dysample) and the hierarchical scale feature pyramid network (HS-FPN) to enhance multi-scale feature fusion while reducing computational redundancy. Additionally, a dynamic feature encoding (DFE) module is used to preserve global information for small objects. Finally, Shape-IoU is employed as the bounding box regression loss function, concentrating on boundary shape and scale to improve localization accuracy. Experimental results on the public SIXray dataset demonstrate that LEM-YOLO achieves a mAP of 94.63%, a 2.56% increase over the original algorithm, while reducing model size by 50.67%, making it more suitable for contraband detection scenarios.

    参考文献
    相似文献
    引证文献
引用本文

赵小涛,李新伟.聚焦边缘与多尺度特征的轻量化违禁品检测算法[J].电子测量技术,2025,48(8):165-176

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码