实验室人员不安全行为智能识别与预警系统
DOI:
CSTR:
作者:
作者单位:

1.河北大学质量技术监督学院 保定 071002; 2.河北大学河北省能源计量与安全检测技术重点实验室 保定 071002

作者简介:

通讯作者:

中图分类号:

TP391;TN60

基金项目:

河北大学2022年实验室开放项目(sy202230)资助


Intelligent recognition and early warning system for unsafe behaviors of laboratory personnel
Author:
Affiliation:

1.School of Quality and Technical Supervision, Hebei University,Baoding 071002, China; 2.Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University,Baoding 071002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人的不安全行为是高校实验室事故发生的主要原因,其中个人防护措施不当是最突出的表现。目前,大多数不安全行为检测方法主要用于建筑、工业场景,仅关注人员是否佩戴防护装备,而无法有效区分个人防护装备佩戴状态的完整性与有效性。本研究将防护装备佩戴状态进行更精细区分,提出一种基于目标检测与属性识别算法的两阶段人员不安全行为识别方法。第一阶段利用改进的YOLOv5-DETR-LPE实现实验室复杂背景和低质量图像条件下人员的精准检测,第二阶段利用基于EfficientNet-B3的属性识别算法实现对检测到的人员的不安全行为的识别。在自建数据集上,YOLOv5-DETR-LPE相较于YOLOv5n算法精确率和mAP50:95提高1.15%和5.11%,而模型参数量和计算量仅有小幅度增加。基于EfficientNet-B3的属性识别算法在3种属性的11类标签的识别中均保持较高精确率。最后设计并实现了识别与预警系统在实际环境中的部署,验证了该系统在实际场景中的有效性和可行性。

    Abstract:

    Unsafe behaviors of individuals are the most contributing cause of accidents in the laboratories of universities, with improper use of personal protective equipment being the most prominent manifestation. Existing methods are primarily used in construction and industrial settings, focusing solely on whether personnel are wearing protective equipment, without effectively identifying the completeness and effectiveness of the personal protective equipment wearing. This study divides the wearing state of PPE into fine labels and proposes a two-stage personal unsafe behavior detection methods based on object detection and attribute recognition algorithms. In the first stage, the improved YOLOv5-DETR-LPE algorithm is used to achieve the precise detecting of personnel under complex background and low-quality image conditions in the laboratory. In the second stage, the attribute recognition algorithm based on EfficientNet-B3 is used to recognize the unsafe behaviors of detected personnel. The results shows that YOLOv5-DETR-LPE achieves a 1.15% improvement in accuracy and a 5.11% increase in mAP50:95 in the self-built dataset compared to YOLOv5n, with only a slight increase in model parameters and computational load. The EfficientNet-B3 algorithm maintains high accuracy in the recognition of all 11 labels of three attributes. Finally, the recognition and early warning system is designed and implemented in an actual environment, verifying the effectiveness and feasibility of the system in practical scenarios.

    参考文献
    相似文献
    引证文献
引用本文

陈辰,苏益凡,周伟,郑雪菲,韩金保.实验室人员不安全行为智能识别与预警系统[J].电子测量技术,2024,47(22):152-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码