面向无人边防的复杂环境遮挡小目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院 太原 030051; 2.中北大学省部共建动态测试技术国家重点实验室 太原 030051

作者简介:

通讯作者:

中图分类号:

TP391;TN912.2

基金项目:

山西省基础研究计划项目(202203021212158,20210302123039)、中北大学研究生科技立项课题(20231910)资助


Complex environment occlusion small target detection algorithm for unmanned border defense
Author:
Affiliation:

1.School of Mechanical Engineering, North University of China,Taiyuan 030051, China; 2.Department of State key Laboratory of Dynamic Measurement Technology, North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面对边境复杂环境导致的人工巡检难题和安全风险,部署无人化监控系统对我国边防至关重要。由于摄像头与入侵目标间距离差异导致所拍图像尺度变化显著问题,以及监控目标采用遮挡策略,现有无人边防系统面临误检、漏检率高和实时性不足的挑战。针对该问题,提出了一种平均精度更高、参数量更少、普适性更强的FDB-YOLOv5遮挡小目标检测算法。首先,采集大量不同遮挡面积的人员样本构建数据集;其次,设计了Faster_C3新结构,以减少遮挡小目标检测网络的延迟和参数量,提高模型检测速率;此外,在颈部网络中引入基于点采样的Dysample上采样器,获得更多的局部细节和语义信息,增强模型对小目标的检测能力,同时降低计算开销;最后,使用基于多尺度特征提取BSPPF的空间金字塔池化方法,有效地解决尺度不变性及遮挡目标特征信息损失问题,从而更好地捕获关键信息,提高模型对遮挡小目标检测的稳定性以及鲁棒性。实验结果表明,与基线YOLOv5相比,FDB-YOLOv5的mAP@0.5%达到了91.5%;参数量和计算量分别减少了19.07%与18.40%;模型的检测速度提高了8.83%;与Faster R-CNN、SSD、YOLOv5s、YOLOv8相比,FDB-YOLOv5表现出更优越的性能,可以为边境无人化目标检测技术提供参考。

    Abstract:

    In the face of the challenges and security risks posed by the complex environment at the border, the deployment of unmanned monitoring systems is crucial for our country′s border defense. The existing unmanned border defense systems encounter challenges such as high rates of false positives and missed detections, as well as insufficient real-time capabilities, primarily due to significant variations in image scale caused by differences in distance between the cameras and the intrusion targets, along with the use of occlusion strategies by the monitored targets. A FDB-YOLOv5 occlusion small target detection algorithm with higher average accuracy, fewer parameters, and stronger universality is proposed to address this issue. Firstly, a dataset is constructed by collect a large number of personnel samples with different occlusion areas; secondly, a new structure called Faster_C3 has been introduced to reduce the delay and parameter count of the occlusion small target detection network, thereby improving the detection speed and universality of the model; in addition, a Dysample upsampler based on point sampling is introduced into the neck network to obtain more local details and semantic information, enhance the detection capability of the model for small targets, while reducing the computational overhead. Finally, a spatial pyramid pooling method based on multi-scale feature extraction BSPPF is used to effectively solve the problems of scale invariance and loss of feature information of the occluded targets, so as to better capture key information and im-prove the stability and robustness of the model for detecting occluded small targets. The experimental results indicate that compared to the baseline YOLOv5, FDB-YOLOv5 mAP@0.5% reaching 91.5%; experimental outcomes demonstrate that compared to the baseline YOLOv5, FDB-YOLOv5 exhibited superior performance with an mAP@0.5 score reaching 91.5%. There was also a reduction in the number of parameters and computations by 19.07% and 18.41%, respectively, and an increase in model detection speed by 8.83%. When compared to Faster R-CNN、SSD、YOLOv5s and YOLOv8, FDB-YOLOv5 showcases outstanding capabilities, offering valuable insights for unmanned border target detection technologies.

    参考文献
    相似文献
    引证文献
引用本文

王慧云,赵俊生,王禹,李鑫延,王淋.面向无人边防的复杂环境遮挡小目标检测算法[J].电子测量技术,2024,47(21):168-177

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码