改进减法平均优化算法的移动机器人路径规划
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学 南京 210044

作者简介:

通讯作者:

中图分类号:

TP301.6;TN98

基金项目:

空间智能控制技术重点实验室稳定支持基金(HTKJ2023KL502020)、江苏省现代农机装备与技术示范推广项目(NJ2023-19)、江苏省农业科技自主创新资金(CX(23)3143)项目资助


Improved subtraction-average-based optimizer algorithm for mobile robot path planning
Author:
Affiliation:

Nanjing University of Information Science and Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统路径规划算法存在效率低、易陷入局部最优解、收敛精度低等问题,减法平均优化算法相比其他算法参数少、原理更简单,但其在搜索过程中会忽略最优值的影响,导致算法陷入局部最优解。针对此问题,本文提出一种融合多策略改进的减法平均优化算法用于路径规划。首先采用Tent混沌映射初始化搜索代理种群,保证种群多样性;引入自适应引导机制,使算法能够随着迭代次数来自适应地选择更优的更新方式;在搜索代理更新方式中融合正余弦算法的种群更新策略,利用正余弦算法良好的波动振荡性,平衡算法的全局和局部搜索,更好的保证算法的收敛精度。最后选用7个基准测试函数并设置不同的栅格地图环境,对提出的算法进行仿真与测试。结果表明本文提出的算法具有更好的收敛精度和速度,且路径规划的性能指标更优、规划效果更好。

    Abstract:

    Traditional path planning algorithms have problems such as low efficiency, easy to fall into local optimal solutions, low convergence accuracy, etc. The subtractive average optimization algorithm has fewer parameters and simpler principles than other algorithms, but it ignores the influence of optimal values during the search process, which causes the algorithm to fall into local optimal solutions. Aiming at this problem, this paper proposes a subtractive average optimization algorithm incorporating multi-strategy improvement for path planning. First of all, Tent chaotic mapping is used to initialize the search agent population to ensure the diversity of the population; an adaptive guidance mechanism is introduced to enable the algorithm to adaptively choose a better update method with the number of iterations; the population update strategy of the sine-cosine algorithm is integrated into the update method of the search agent, and the good fluctuating and oscillating nature of the sine-cosine algorithm is utilized to balance the global and local searches of the algorithm and to better ensure the algorithm′s convergence accuracy. Finally, the proposed algorithm is simulated and tested by choosing seven benchmark test functions and setting different raster map environments. The results show that the proposed algorithm has better convergence accuracy and speed, and the performance index of path planning is better and the planning effect is better.

    参考文献
    相似文献
    引证文献
引用本文

张柄棋,刘云平,王爽,程勇.改进减法平均优化算法的移动机器人路径规划[J].电子测量技术,2024,47(24):57-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-24
  • 出版日期:
文章二维码