基于YOLO的多模态钢轨表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学人工智能学院 唐山 063210; 2.华北理工大学河北工业智能感知重点实验室 唐山 063210; 3.华北理工大学河北工业智能感知重点实验室 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391.41; TN911.73

基金项目:

河北省“三三三人才工程”项目(A202102002)、河北省创新能力提升计划(23561007D)、2023年唐山市重点研发项目(23140204A)资助


Multi-modal rail surface defect detection method based on YOLO
Author:
Affiliation:

1.College of Artificial Intelligence, North China University of Science and Technology,Tangshan 063210, China; 2.Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China; 3.College of Metallurgy and Energy, North China University of Science and Technology,Tangshan 063210, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢轨表面缺陷区域与背景区域特征相似特性导致的模型检测性能下降问题,本文研究高实时性轻量级目标检测网络YOLOv8n,提出一种基于YOLO的多模态钢轨表面缺陷检测算法RailBiModal-YOLO。改进YOLOv8n模型:构建双流主干网络结构并行提取多尺度深度信息和RGB信息;为降低低质量图像特征相互干扰并能充分利用双模态互补信息,设计了一种即插即用的双模态特征交互修正融合模块;在多尺度特征构建阶段引入EVCBlock,增强RGB-D特征层的层内信息交互,提高小缺陷检测能力。以东北大学NEU-RSDDS-AUG作为实验数据集,将数据集自定义划分为4种典型缺陷类型,以平均精度均值mAP、每秒检测帧数FPS、参数量作为主要评价指标,实验结果表明:所提模型与原模型相比,在保证高检测速度的同时,mAP@50,mAP@50:95分别提高1.8%和3.2%,并具有更强鲁棒性。

    Abstract:

    To tackle the performance decline of models detecting rail surface defects due to the similarity between the characteristics of defect areas and background areas, this paper explores the high real-time, lightweight object detection network YOLOv8n and proposes a multi-modal rail surface defect detection algorithm, named RailBiModal-YOLO. Improvements to the YOLOv8n model involve the construction of a dual-stream backbone network structure that allows for the parallel extraction of multi-scale depth and RGB information; a plug-and-play dual-modal feature interaction and revision fusion module is designed to minimize the interference of low-quality image features and to fully leverage the complementary information from both modalities; the EVCBlock is introduced during the multi-scale feature construction phase to enhance the intra-layer information interaction within the RGB-D feature layers, thereby improving the detection of small defects. The Northeastern University NEU-RSDDS-AUG dataset is utilized for experiments, which has been custom-divided into four typical defect types, with mean average precision (mAP), frames per second (FPS), and the number of parameters serving as the primary evaluation metrics. It is demonstrated by the experimental results that the proposed model, in comparison to the original model, not only maintains high detection speed but also achieves enhancements in mAP@50 and mAP@50:95 by 1.8% and 3.2%, respectively, along with exhibiting increased robustness.

    参考文献
    相似文献
    引证文献
引用本文

孙铁强,魏光辉,宋超,肖鹏程.基于YOLO的多模态钢轨表面缺陷检测方法[J].电子测量技术,2024,47(21):72-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码