跨层融合的轻量化太阳能电池片缺陷分割方法
DOI:
CSTR:
作者:
作者单位:

上海电机学院机械学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TP301.6;TN911.73

基金项目:

上海市科委地方院校能力建设项目(22010501000)资助


C2LA-U2-Net: lightweight defect segmentation method for solar cells with cross-layer fusion
Author:
Affiliation:

College of Mechanical Engineering, Shanghai Dianji University,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前多晶太阳能电池片表面缺陷分割中存在的细小特征无法识别、缺陷分割边界模糊和模型参数量大等问题,本文提出一种带有交叉注意力机制和残差细化模块的轻量化语义分割模型C2LA-U2-Net。首先,通过在外部解码器阶段设计了带有交叉注意力机制的C2LA模块,以提取多尺度的空间特征,减少空间信息丢失,同时捕获长程依赖关系,从而增强对细小缺陷的分割效果;其次,为应对预测中的边界模糊的问题,引入一种轻量化的二阶段残差细化模块(D-RRM),用于细粒度特征建模,以提高预测边界精度;最后,为进一步降低模型复杂度,引入幻影卷积。实验结果表明,与基线模型相比,C2LA-U2-Net模型的类别平均像素精度(MPA)、平均交并比(MIoU)、平均召回率(MRecall)和F1分数提升了3.1%、4.49%、4.39%和4.17%。同时,模型参数量和GFLOPs下降了89.77%和56.68%,推理速度提升了76.97%,证明了本文方法的有效性。

    Abstract:

    A lightweight semantic segmentation model named C2LA-U2-Net, equipped with a cross attention mechanism and a residual refinement module, was proposed to address issues such as the inability to recognize fine features, blurry defect boundaries, and large model parameters in the segmentation of surface defects in polycrystalline solar cells. Firstly, a C2LA module with a cross attention mechanism was designed in the external decoding stage to extract multi-scale spatial features, reduce spatial information loss, and capture long-range dependencies, which enhanced the segmentation performance for small defects. Secondly, a lightweight twostage residual refinement module (D-RRM) was introduced to tackle the issue of blurry prediction boundaries by modeling fine-grained features to improve boundary precision. Finally, Ghost convolutions were incorporated to further reduce model complexity. Experimental results indicated that, compared to the baseline model, the C2LA-U2-Net model achieved improvements of 3.1% in mean pixel accuracy (MPA), 4.49% in mean intersection over union (MIoU), 4.39% in mean recall rate (MRecall), and 4.17% in F1 score. At the same time, the model′s parameters and GFLOPs decreased by 89.77% and 56.68%, respectively, while inference speed increased by 76.97%, demonstrating the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈光耀,陈田,高学海,刘军.跨层融合的轻量化太阳能电池片缺陷分割方法[J].电子测量技术,2024,47(24):118-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-24
  • 出版日期:
文章二维码