融入噪声的监督增强网络用于小样本数据增强
作者:
作者单位:

沈阳化工大学信息工程学院 沈阳 110142

中图分类号:

TN081

基金项目:

国家自然科学基金(62273242)、辽宁省教育厅科学研究一般项目(LJ2020021)资助


Supervised enhancement network incorporating noise for small sample data augmentation
Author:
Affiliation:

College of Information Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在复杂的工业过程中,由于关键变量难以测量,过程数据具有不平衡和不完整的特点,导致软测量性能下降。为了解决这一问题,提出一种融入噪声的监督增强自编码器虚拟样本生成方法。首先,为了加强输入与输出的映射关系并保证特征信息的完整性,该方法在自编码器的编码部分添加增强层,解码部分引入标签信息进行有监督约束训练。为了增加虚拟样本的多样性,在监督增强自编码器隐藏层提取的特征中加入高斯噪声。将生成的虚拟样本与原始小样本相结合,增强软测量模型的性能。与传统的虚拟样本生成方法不同,所提的NISEAE-VSG模型可以同时生成输入输出虚拟样本。为了验证所提方法的有效性,使用火力发电和聚乙烯过程的数据集进行仿真验证。仿真结果表明,所提方法生成的虚拟样本优于其他虚拟样本生成方法,可有效提高软测量建模精度。

    Abstract:

    In the complex industrial processes, the process data have the characteristics of imbalance and are incomplete due to the difficult-to-measure key variables, leading to the performance degradation of soft sensors. In order to deal with this problem, a novel noise injection supervised enhanced autoencoder virtual sample generation method is proposed. Firstly, in order to strengthen the mapping relationship between input and output and ensure the integrity of feature information, this method adds an enhancement layer to the encoding part of the autoencoder, and introduces label information for supervised constraint training in the decoding part. In order to increase the diversity of virtual samples, Gaussian noise is added to the features extracted from the hidden layer of the supervised enhanced autoencoder. Combine the generated virtual samples with the original small samples to enhance the performance of the soft sensing model. Unlike traditional virtual sample generation methods, the proposed NISEAE-VSG model can simultaneously generate useful input-output virtual samples. To verify the effectiveness of the proposed method, simulations were conducted using datasets of thermal power generation and polyethylene processes. The simulation results show that the proposed method generates virtual samples that are superior to other virtual sample generation methods and can effectively improve the accuracy of soft sensing modeling.

    参考文献
    相似文献
    引证文献
引用本文

郭小萍,赵霄丰,李元.融入噪声的监督增强网络用于小样本数据增强[J].电子测量技术,2024,47(20):109-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-01-06
文章二维码