基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测
DOI:
CSTR:
作者:
作者单位:

湖南工业大学电气与信息工程学院 株洲 412007

作者简介:

通讯作者:

中图分类号:

TM714; TN913

基金项目:

国家自然科学基金(52377185)、湖南省教育厅科学研究项目重点项目(21A0349)、湖南工业大学校级联合项目(CX2404)资助


Short-term power load forecasting based on generative adversarial networks and EMD-ISSA-LSTM
Author:
Affiliation:

School of Electrical and Information Engineering, Hunan University of Technology,Zhuzhou 412007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM中。为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法。最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证。结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性。

    Abstract:

    Aiming at the inherent instability and nonlinearity of power load, which makes it difficult to improve the accuracy of short-term power load prediction. In this paper, we propose a short-term power load prediction method based on the combination of EMD and LSTM. First, the original signal is decomposed into a series of eigenmode functions and a residual quantity using EMD. Subsequently, all the components are input into the LSTM. To further improve the accuracy of load forecasting and optimize the generalization ability of the model, an improved sparrow search algorithm is introduced to optimize LSTM hyperparameters for large component signals, and a table generative adversarial network is introduced to generate new data samples for raw load data, forming a short-term power load forecasting method based on table generative adversarial network and EMD-ISSA-LSTM. Finally, the load data of the ninth mathematical modeling competition for electricians and the load data of a prefecture and city in Hunan Province containing distributed power sources are used to validate the effect, and the results show that the mean absolute percentage error of the model under the two datasets is 2.37% and 2.26%, respectively. The validity of the method is verified.

    参考文献
    相似文献
    引证文献
引用本文

曾进辉,苏旨音,肖锋,刘颉,孙贤水.基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测[J].电子测量技术,2024,47(20):92-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码