改进的YOLOv8s摔倒检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.芜湖学院大数据与人工智能系 芜湖 241000; 2.安徽师范大学物理与电子信息学院 芜湖 241000; 3.安徽师范大学计算机与信息学院 芜湖 241000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.7

基金项目:

安徽省高校自然科学研究重点项目(2023AH052459)、安徽师范大学皖江学院重点自然科研项目(WJKYZD-202301)、安徽省高等学校省级质量工程项目(2022sx052)、安徽师范大学皖江学院教学质量工程项目(WJXGK-202201)资助


Research on improved YOLOv8s fall detection algorithm
Author:
Affiliation:

1.Department of Big Data and Artificial Intelligence, Wuhu University,Wuhu 241000, China; 2.School of Physics and Electronic Information, Anhui Normal University,Wuhu 241000, China; 3.School of Computer and Information, Anhui Normal University,Wuhu 241000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够准确的识别老人摔倒姿态,提出了一种改进的YOLOv8s摔倒检测模型。首先,在YOLOv8s模型的主干网络中引入SE注意力机制模块,将通道特征分成多个子图特征,让不同组的特征进行融合,使网络自适应地聚焦于关键特征,抑制对当前任务贡献度较小的特征,提高了特征提取能力;其次,用EIoU替换CIoU损失函数,加快收敛速度,提高了模型的精确率和稳定性;最后,将训练好的模型在URFD+等数据集上验证。实验结果表明,该模型精确率达到了99.50%,召回率达到了99.00%,mAP50达到了99.50%,比原模型的性能全面提升。与YOLOv5s+K-means++模型比较,精确率提升了3.22%,召回率提升了5.32%,mAP50提升了2.38%;与C2D-YOLO模型比较,精确率提升了10.00%,召回率提升了11.40%,mAP50提升了7.80%;与YOLOv5s+C3new模型比较,精确率提升了2.50%,召回率提升了6.80%,mAP50提升了4.1%。改进后模型较原模型和目前先进模型有较大的优势。

    Abstract:

    In order to accurately identify the fall posture of the elderly, an improved YOLOv8s fall detection model is proposed. Firstly, the SE attention mechanism module is introduced into the backbone network of the YOLOv8s model, which divides the channel features into multiple subgraph features, and fuses the features of different groups, so that the network can adaptively focus on the key features, suppresses the features that contribute less to the current task, and improves the feature extraction ability; secondly, the CIoU loss function is replaced by EIoU to accelerate the convergence rate and improve the accuracy and stability of the model. Finally, the trained model is verified on URFD+ and other data sets. The experimental results show that the precision rate of the model reaches 99.50%, the recall rate reaches 99.00%, and the mAP50 reaches 99.50%, which is better than the original model. Compared with the YOLOv5s+K-means++ model, the accuracy is increased by 3.22%, the recall rate is increased by 5.32%, and the mAP50 is increased by 2.38%. Compared with the C2D-YOLO model, the accuracy is increased by 10.00%, the recall rate is increased by 11.40%, and the mAP50 is increased by 7.80%. Compared with the YOLOv5s+C3new model, the accuracy is increased by 2.50%, the recall rate is increased by 6.80%, and the mAP50 is increased by 4.1%. The improved model has greater advantages than the original model and the current advanced model.

    参考文献
    相似文献
    引证文献
引用本文

朱强军,程靓靓,汪慧兰,王杨.改进的YOLOv8s摔倒检测算法研究[J].电子测量技术,2024,47(19):190-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-24
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知