基于步长上界原理的变步长FXLMS算法研究
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院 太原 030051; 2.北京东方振动和噪声技术研究所 北京 100085; 3.中北大学机电工程学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TB535;TN911.4

基金项目:


Research on variable step size FXLMS algorithm based on step size upper limit ratio method
Author:
Affiliation:

1.School of Mechanical Engineering, North University of China,Taiyuan 030051, China; 2.China Orient Institute of Noise and Vibration,Beijing 100085, China; 3.School of Mechatronic Engineering, North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对次级通道突变对算法收敛速度和系统稳定性的潜在影响,本文提出一种自适应变步长FXLMS算法。首先推导步长上界公式,基于最优收敛步长与步长上界关系,确立最优收敛步长的关键参数。通过计算次级通道突变前后最优收敛步长比,实现步长自适应调整。其次,使次级通道发生不同程度突变,以比较本研究算法、经典FXLMS算法以及各类变步长算法在收敛速度与稳态误差方面的性能表现,发现新算法均在迭代200 次后收敛,均方误差保持在-85 dB附近,优于经典FXLMS和其他变步长算法。最后用真实测量的次级通道数据分析新算法和经典FXLMS算法的控制效果。结果表明,在次级通道发生突变后,新算法在5 s后均方误差稳定在-47 dB,而经典FXLMS算法会使系统不稳定。证明新算法能很好兼顾收敛速度和稳态误差,并且具有良好的自适应性。

    Abstract:

    In view of the potential impact of secondary path mutation on the convergence speed and system stability of the algorithm, an adaptive variable step size FXLMS algorithm is proposed. Firstly, the formula of the upper bound of the step size is derived, and the key parameters are established based on the relationship between the optimal convergence step size and the upper bound of the step size. By comparing the optimal step size ratio before and after the mutation of the secondary path, the adaptive adjustment of the step size was realized. Secondly, in order to compare the performance of the proposed algorithm, the classical FXLMS algorithm and various variable step size algorithms in terms of convergence speed and steadystate error, it is found that the new algorithm converges after 200 iterations, and the mean square error remains around -85 dB, which is better than the classical FXLMS and other variable step size algorithms. Finally, the control effect of the new algorithm and the classical FXLMS algorithm is analyzed by using the secondary path data of real measurements. The results show that after the mutation of the secondary path, the mean square error of the new algorithm is stable at -47 dB after 5 s, while the classical FXLMS algorithm will make the system unstable. It is proved that the new algorithm can take into account the convergence speed and steady-state error well, and has good adaptability.

    参考文献
    相似文献
    引证文献
引用本文

谢炎江,原霞,刘锋,王玉帅,樊文欣.基于步长上界原理的变步长FXLMS算法研究[J].电子测量技术,2024,47(20):101-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码