基于语音脑电的双模态心理压力分级评估研究
DOI:
CSTR:
作者:
作者单位:

1.中国刑事警察学院公安信息技术与情报学院 沈阳 110854; 2.证据科学教育部重点实验室(中国政法大学) 北京 100088

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

国家重点规划研发项目(2017YFC0821005)、证据科学教育部重点实验室(中国政法大学)开放基金资助课题(2021KFKT09)、公安学科基础理论研究创新计划项目(2022XKGJ0110)、辽宁省科技厅联合开放基金资助项目(2020-KF-12-11)、中央高校基本科研业务费专项资金资助(3242019010)、辽宁省自然科学基金项目(2019-ZD-0168)、教育部重点研究项目(E-AQGABQ20202710)、上海市现场物证重点实验室开放课题(2021XCWZK08)项目资助


Evaluation of psychological stress level based on speech and EEG signal
Author:
Affiliation:

1.College of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Shenyang 110854, China; 2.Key Laboratory of Evidence Science, Ministry of Education (China University of Political Science and Law), Beijing 100088, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了有效提高压力分级方法的精确度,实现多模态信息交互和多维立体融合特征的深层挖掘,提出一种基于模型分级的多模态压力识别方法。基于语音信号振幅特征和脑电信号各频段波幅特征,构建新的心理压力指数模型,并提出针对该模型的心理压力分级方法,有效解决了主观评估精度受限以及压力分类依据不明确等问题。以模型分级为依据重制MAHNOB-HCI数据集标签,构建了包含脑电时频空信息和语音时频信息的立体多维融合特征,避免了单特征识别方法导致的压力信息缺失问题。与单模态识别方法的对比分析,本文提出方法识别准确率分别提高了10.72%和3.36%;与常规双模态方法的对比分析,识别准确率提高了7.51%。综上表明,本文所提方法能够更准确的揭示异构数据全频段信息与心理压力的关联关系,有效提升了识别性能。

    Abstract:

    In order to improve the accuracy of pressure classification method. realize the deep mining of multi-modal information interaction and multi-dimensional three-dimensional fusion features, a multi-modal pressure identification method based on model classification is proposed. A new psychological stress index model is constructed based on the amplitude characteristics of speech signals and the amplitude characteristics of each frequency band of EEG signals, and a psychological stress classification method for the model is proposed to solve the problems of limited subjective assessment accuracy and unclear stress classification basis. The labels of MAHNOB-HCI data set are reconstructed based on the model classification, and the multi-dimensional stereo fusion features containing EEG time-frequency-space information and speech time-frequency information are constructed to solve the problem of missing pressure information caused by the single feature research method. Compared with the single modal method, the recognition accuracy of the proposed method is increased by 10.72% and 3.36%, respectively.Compared with the conventional dual-modal method, the recognition accuracy is increased by 7.51%. To sum up, the proposed method can more accurately reveal the relationship between the full-band information of heterogeneous data and psychological stress, and effectively improve the recognition performance.

    参考文献
    相似文献
    引证文献
引用本文

杜扶遥,姜囡,陆思宇.基于语音脑电的双模态心理压力分级评估研究[J].电子测量技术,2024,47(19):114-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-24
  • 出版日期:
文章二维码