基于DSCI-Yolov8的纺织品材质分类方法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044; 2.安徽建筑大学电子与信息工程学院 合肥 230601

作者简介:

通讯作者:

中图分类号:

TP391.4;TN791

基金项目:

国家自然科学基金(41775165,41775039)、安徽省高校杰出青年科研项目(2023AH020022)资助


Textile material classification method based on DSCI-YOLOv8
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2.Electronics and Information Engineering College, Anhui Jianzhu University,Hefei 230601, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现工厂的无人化生产,需要高效地对纺织品进行分类。针对传统纺织品生产厂的人工分类方法存在着效率低下、难以满足大规模生产需求的问题。将人工智能和计算机视觉先进技术应用到纺织品材质分类中,提出了一种基于DSCI-YOLOv8的纺织材质分类算法。在YOLOv8模型原有分类网络的基础上添加坐标信息注意力模块,增强模型对不同尺度纺织品材质特征的提取能力,提高了网络分类的准确率,同时减少了计算所需的一部分计算量和参数量;其次将分布偏移卷积加入到C2f网络模块,改进了分类神经部分的网络结构,从而存储器的使用得到降低,计算速度也得到提高。实验结果表明,在自制的纺织品材质分类数据集FMCD上进行测试,改进后的模型相较于YOLOv8模型准确率提高了2.09个百分点,每秒处理图片数提高13.5%。大幅减少计算成本的同时,有效提高了纺织品材质分类的精度和速度。可以满足纺织工业对产品类别分类和质量的检测需求。

    Abstract:

    In order to realize unmanned production in factories, textiles need to be sorted efficiently. The manual classification method for traditional textile production plants has the problem of low efficiency and difficulty in meeting the needs of large-scale production. Artificial intelligence and computer vision advanced technology were applied to textile material classification, and a textile material classification algorithm based on DSCI-YOLOv8 was proposed. On the basis of the original classification network of the YOLOv8 model, the coordinate information attention module is added to enhance the model′s ability to extract the features of textile materials at different scales, improve the accuracy of network classification, and reduce some of the calculations and parameters required for calculation. Secondly, the distributed offset convolution is added to the C2f network module, which improves the network structure of the classification neural part, so that the memory usage is reduced and the computation speed is improved. Experimental results show that the accuracy of the improved model is increased by 2.09 percentage points and 13.5% increase in image processing per second compared with the YOLOv8 model. While greatly reducing the calculation cost, it effectively improves the accuracy and speed of textile material classification. It can meet the testing needs of the textile industry for product category classification and quality.

    参考文献
    相似文献
    引证文献
引用本文

王敏,许永琪,曹小萌,曹冉,欧翔.基于DSCI-Yolov8的纺织品材质分类方法[J].电子测量技术,2024,47(18):130-137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-20
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知