双自适应CKF锂电池荷电状态估计
DOI:
CSTR:
作者:
作者单位:

1.郑州大学机械与动力工程学院 郑州 450001; 2.广东佛山联创工程研究生院 佛山 528300

作者简介:

通讯作者:

中图分类号:

TM912;TN06

基金项目:

河南省重大科技专项(221100240200)资助


Estimation of state of charge of lithium battery dual adaptive CKF
Author:
Affiliation:

1.School of Mechanical and Power Engineering, Zhengzhou University,Zhengzhou 450001, China; 2.Guangdong Foshan Lianchuang Engineering Graduate School,Foshan 528300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池荷电状态是锂电池安全运行最重要的状态参数,为了提高锂电池SOC的估算精度,本文提出了一种双自适应容积卡尔曼滤波算法。利用锂电池二阶DP等效电路模型做状态参数的离线辨识,使用精确度较高的容积卡尔曼滤波算法估测单个SOC,并且引入自适应因子去估测实时噪声,在获得SOC的基础对锂电池内阻实时估计,用双自适应容积卡尔曼滤波算法估测SOC。为了全面验证自己的结论符合实际工况要求,本文进行了动态压力测试、联邦城市驾驶、城市驾驶循环和城郊驾驶循环的模拟工况实验,通过算法获得前3种工况SOC的误差在0.5%以内,城郊驾驶循环工况的误差在1%以内,并且具有较强的鲁棒性,证明自己的算法成立。

    Abstract:

    The state of charge of lithium batteries is the most important state parameter for the safe operation of lithium batteries. In order to improve the estimation accuracy of lithium battery SOC, this paper proposes a dual adaptive volumetric Kalman filter algorithm. The second-order DP equivalent circuit model of lithium batteries is used for offline identification of state parameters, and a high-precision volumetric Kalman filter algorithm is used to estimate a single SOC. An adaptive factor is introduced to estimate real-time noise. On the basis of obtaining SOC, the internal resistance of lithium batteries is estimated in real time, and the dual adaptive volumetric Kalman filter algorithm is used to estimate SOC. In order to fully verify that the conclusions of this paper meet the requirements of actual working conditions, this paper conducted dynamic stress testing, federal city driving, urban driving cycle and suburban driving cycle simulation experiments. The SOC errors of the first three working conditions obtained by the algorithm are within 0.5%, and the error of the suburban driving cycle working condition is within 1%, and it has strong robustness, proving that the algorithm is valid..

    参考文献
    相似文献
    引证文献
引用本文

杨宇飞,王高杰,郑艳萍.双自适应CKF锂电池荷电状态估计[J].电子测量技术,2024,47(15):53-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知