基于ISCSO-BP-PID的SMB组分纯度模糊解耦控制方法研究
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学信息工程学院 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TP18;TN05

基金项目:

国家自然科学基金(60874057)、国家高技术研究发展计划项目(2008AA042902)资助


Research on fuzzy decoupling control method of SMB component purity based on ISCSO-BP-PID
Author:
Affiliation:

College of Information Engineering, Shenyang University of Chemical Technology,Shenyang 110142,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模拟移动床色谱分离系统中存在的强耦合、多变量、非线性和时滞等问题,提出了一种基于改进沙猫群优化算法的BP神经网络自调整PID参数的模拟移动床组分纯度模糊解耦控制方法。该方法首先通过模糊解耦消除了A、B组分纯度控制回路之间的耦合,然后结合改进的沙猫群优化算法和BP神经网络,实现了PID参数的自适应调整,从而有效控制A、B组分的纯度。在改进的沙猫群优化算法中,引入了Cubic混沌映射来初始化沙猫种群,以提高种群分布的均匀性;在搜索猎物阶段加入了可变螺旋搜索策略,使沙猫群拥有更多的搜索路径来调整自身位置;同时,融合了麻雀搜索算法的警戒机制,以加速算法的收敛速度。通过对12个CEC2022测试函数进行验证,证明了改进沙猫群优化算法的有效性。仿真结果表明,所提方法不仅能够有效消除A、B组分纯度控制回路间的耦合效应,而且在各个实际应用场景中均展现出卓越的性能。与传统的PID控制方法相比,在流量突变情况下,调节时间分别缩短了75.40%和77.57%,超调量分别减少了91.84%和81.96%。该方法具备较强的抗干扰能力和良好的鲁棒性,显著改善了整个系统的控制性能。

    Abstract:

    Aiming at the problems of strong coupling, multivariate, nonlinearity, and time delay in the simulated moving bed chromatographic separation system, a fuzzy decoupling control method for simulated moving bed component purity based on the self-tuning PID parameters of BP neural network with an improved sand cat swarm optimization algorithm is proposed. First, fuzzy decoupling is used to eliminate the coupling between the purity control loops of components A and B. Then, combined with the improved sand cat swarm optimization algorithm and BP neural network, the adaptive adjustment of PID parameters is realized, thereby effectively controlling the purity of components A and B. In the improved sand cat swarm optimization algorithm, the Cubic chaotic map is introduced to initialize the sand cat population to improve the uniformity of population distribution; the variable spiral search strategy is added in the prey search phase to enable the sand cat swarm to have more search paths to adjust its position; simultaneously, the alert mechanism of the sparrow search algorithm is integrated to accelerate the convergence speed of the algorithm. The effectiveness of the improved sand cat swarm optimization algorithm is verified by 12 CEC2022 test functions. The simulation results show that the proposed method can not only effectively eliminate the coupling effect between the purity control loops of components A and B, but also demonstrates excellent performance in various real-world application scenarios. Compared to traditional PID control methods, the proposed approach reduced the settling time by 75.40% and 77.57%, and decreased the overshoot by 91.84% and 81.96% under flow rate fluctuation conditions. This method possesses strong anti-interference ability and good robustness, and improves the control performance of the entire system.

    参考文献
    相似文献
    引证文献
引用本文

李凌,陈玉环.基于ISCSO-BP-PID的SMB组分纯度模糊解耦控制方法研究[J].电子测量技术,2024,47(15):30-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知