基于GA-BPNN混合智能模型的钻速预测
DOI:
CSTR:
作者:
作者单位:

1.长江大学机械工程学院 荆州 434023; 2.油气钻采工程湖北省重点实验室(长江大学) 荆州 434023; 3.中海油田服务股份有限公司 三河 065201

作者简介:

通讯作者:

中图分类号:

TN919.5;TE355

基金项目:

湖北省油气钻采工程重点实验室项目(YQZC202409)、长江大学研究生院项目(YJY202336)资助


Drilling rate prediction based on GA-BPNN hybrid intelligent model
Author:
Affiliation:

1.College of Mechanical Engineering,Yangtze University,Jingzhou 434023, China; 2.Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),Jingzhou 434023,China; 3.China Oilfield Services Limited,Sanhe 065201,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    石油勘探和开发领域中,准确预测机械钻速对于提高钻井效率和降低工程风险至关重要。准确的机械钻速预测为制定钻井方案、评估钻井风险提供重要依据,但对于复杂的非线性的钻井系统,传统的钻速方程和机器学习方法无法全面考虑影响机械钻速的因素。本文基于一种遗传算法优化的反向传播神经网络的机械钻速预测模型,以中国南海某油田历史钻井数据为基础,通过SG平滑处理,归一化处理和Pearson、Spearman 和 Kendall 相关系数综合分析进行特征参数选择的数据预处理,与BP、RBF、MEA-BP神经网络模型以及ELM、RF、SVM、KNN等传统机器学习方法进行比较验证。实验结果表明,GA-BP的R2为0.967,预测值与实测值具有良好的一致性,比标准BP神经网络预测R2精确提高了17.64%,也较其他模型具有更准确的预测结果。这种混合智能预测模型能够准确预警和预防钻井事故,为指导油田钻井施工参数提供有效数据,从而提高钻井施工的经济效益。

    Abstract:

    In the field of oil exploration and development, accurate prediction of mechanical drilling rate is crucial for improving drilling efficiency and reducing engineering risks. Accurate mechanical drilling rate prediction provides an important basis for formulating drilling plans and assessing drilling risks. However, traditional drilling rate equations and machine learning methods cannot fully consider the factors affecting the mechanical drilling rate in complex nonlinear drilling systems. This paper presents a mechanical drilling rate prediction model based on a genetic algorithm optimized backpropagation neural network (GA-BPNN), using historical drilling data from an oil field in the South China Sea. The data preprocessing includes SG smoothing, normalization, and comprehensive feature parameter selection through Pearson, Spearman, and Kendall correlation coefficients. The model is compared and verified with BP, RBF, MEA-BP neural network models, and traditional machine learning methods such as ELM, RF, SVM, and KNN. The experimental results show that the GA-BP has an R2 of 0.967, and the predicted values are in good agreement with the measured values, with an accuracy increase of 17.64% compared to the standard BP neural network prediction R2, and more accurate predictions than other models. This hybrid intelligent prediction model can accurately predict and prevent drilling accidents, provide effective data for guiding oil field drilling construction parameters, thereby improving the economic benefits of drilling construction.

    参考文献
    相似文献
    引证文献
引用本文

邱腾煌,钱玉宝,季威.基于GA-BPNN混合智能模型的钻速预测[J].电子测量技术,2024,47(15):177-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知