面向无人机监控的动态多尺度目标检测模型的研究与实现
DOI:
CSTR:
作者:
作者单位:

1.沈阳化工大学计算机科学与技术学院 沈阳 110142; 2.沈阳科技学院信息与控制工程系 沈阳 110167; 3.沈阳化工大学网络与信息化中心 沈阳 110142; 4.辽宁省化工过程工业智能化技术重点实验室 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

辽宁省教育厅科学研究项目(LJKZ0449)资助


Research and implementation of dynamic multi-scale target detection model for UAV surveillance
Author:
Affiliation:

1.School of Computer Science and Technology, Shenyang University of Chemical Technology,Shenyang 110142, China; 2.Department of Information and Control Engineering, Shenyang Institute of Science and Technology,Shenyang 110167, China; 3.Network and Informatisation Centre, Shenyang University of Chemical Technology,Shenyang 110142, China; 4.Key Laboratory of Industrial Intelligent Technology of Chemical Process of Liaoning Province,Shenyang 110142, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人机侦察、安防监控以及自动驾驶等领域中,目标检测技术面临巨大的挑战,图像中的目标往往具有多尺度属性,尤其是小尺寸目标检测难,以及目标很容易受到不同程度的遮挡。针对这些亟待解决的问题,本文提出了一种创新的动态多尺度目标检测模型:YOLO-DDE。首先,本文了提出了CEMA和CED卷积模块,增强了骨干网络对多尺度信息的处理能力精细特征提取能力,从而实现在复杂场景下更加精确的识别效果。此外,本文通过对FPAN网络结构进行创新性重构,提出了DFPN结构,此结构采用纵向跨尺度融合技术,显著提升了模型的尺度特征融合效果。最后,引入了动态检测头,提出了DD-Head结构,强化了模型对下游任务处理的能力。综上所述,本文提出的YOLO-DDE模型以其动态多尺度结构,为目标检测技术的性能提升提供了新的可能性。本文在PASCAL VOC数据集上进行了消融实验和对比试验,与当前主流先进模型YOLOv8相比,本文模型YOLO-DDE在评价指标map50和map50.95上分别提升了1.8%和3.2%,并且本文还在VisDrone、HIT-UAV、FAIR1M2.0数据集上进行了泛化性实验,验证了模型具有很强的泛化能力。

    Abstract:

    In the fields of UAV reconnaissance, security monitoring, and autonomous driving, target detection technology faces significant challenges. Targets in images often exhibit multi-scale attributes, making detection of small-sized targets particularly difficult, and targets are prone to various degrees of occlusion. To address these pressing issues, this paper proposes an innovative dynamic multi-scale target detection model: YOLO-DDE. Firstly, novel CEMA and CED convolutional modules are introduced to enhance the backbone network′s ability to handle multi-scale information and extract fine features, thus achieving more precise recognition in complex scenes. Additionally, the FPAN network structure is innovatively restructured into the DFPN structure, which employs longitudinal cross-scale fusion technology to significantly improve the model′s scale feature fusion effect.Finally, a dynamic detection head is introduced, proposing the DD-Head structure, which strengthens the model′s ability to handle downstream tasks. In summary, the proposed YOLO-DDE model, with its dynamic multi-scale structure, provides new possibilities for improving target detection technology performance.Experiments on the PASCAL VOC dataset were conducted to validate the proposed model. Compared to the current state-of-the-art model YOLOv8, the YOLO-DDE model achieves a 1.8% and 3.2% improvement in evaluation metrics map50 and map50.95, respectively. Furthermore, generalization experiments on the VisDrone, HIT-UAV, and FAIR1M2.0 datasets validate the model′s strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

张宇,王延吉,马辉,闫锴,李大舟.面向无人机监控的动态多尺度目标检测模型的研究与实现[J].电子测量技术,2024,47(10):141-150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知