小管径弯头畸变漏磁缺陷图像智能识别方法
DOI:
CSTR:
作者:
作者单位:

常州大学安全科学与工程学院 常州 213164

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:

中国石油天然气股份有限公司—常州大学创新联合体科技合作项目(KYZ22020129)、常州大学科研启动项目(ZMF22020039)资助


Intelligent identification method for distortion magnetic flux leakage defects image of small-diameter pipe elbows
Author:
Affiliation:

School of Safety Science and Engineering, Changzhou University,Changzhou 213164, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决小管径弯头不饱和磁化造成的缺陷漏磁信号图像畸变问题,实现弯头畸变漏磁缺陷图像智能化、高精度识别,提出一种小管径弯头畸变漏磁缺陷图像智能识别方法。采用MSRCR-HF图像增强算法处理弯头缺陷畸变图像,并在YOLOv5网络中集成CBAM和SPD-Conv模块进行网络优化,通过仿真建立弯头缺陷数据集输入网络中进行训练和测试。结果表明,提出的MSRCR-HF算法能有效解决弯头漏磁缺陷图像畸变问题,改进的YOLOv5模型在建立的数据集上具有较高的识别精度,矩形槽缺陷识别精度为95.5%,半球形缺陷识别精度为93.0%。该方法对于小管径弯头畸变漏磁缺陷智能识别具有较高的可行性,可提高管道安全检测效率。

    Abstract:

    In order to solve the problem of image distortion of defect magnetic flux leakage (MFL) signal caused by unsaturated magnetization of small pipe diameter elbow, and realize intelligent and high-precision identification of elbow distortion magnetic flux leakage defect image. This paper proposed an intelligent image identification method for distortion MFL defects in small-diameter pipe elbows. The MSRCR-HF image restoration algorithm was applied to process the distorted images, which to solve the problem of defective image distortion caused by the weak MFL signal of the elbow. The YOLOv5 network was optimized by integrating the CBAM and the SPD-Conv module to improve the network's feature extraction ability for elbow distortion and MFL defects. Finally, the elbow defect datasets were established through simulation, and it was input into the network for training and testing. The results shown that the MFL signal image of the same defect at the elbow was distorted, and the defect feature information cannot be directly and effectively obtained. The proposed MSRCR-HF algorithm effectively resolved the image distortion problem associated with elbow MFL defects. Additionally, the improved YOLOv5 model achieved high recognition accuracy on the established dataset, with accuracy rates of 95.5% for rectangular groove defects, and 93.0% for hemispherical defects. This method exhibited strong feasibility for intelligent identification of distortion MFL defect in small-diameter pope elbows and can improve the efficiency of pipeline safety inspection.

    参考文献
    相似文献
    引证文献
引用本文

赵鹏程,秦浩东,张颖.小管径弯头畸变漏磁缺陷图像智能识别方法[J].电子测量技术,2024,47(8):181-188

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知